Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 229(6): 3408-3423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33206370

RESUMO

The root-knot nematode Meloidogyne incognita secretes specific effectors (MiEFF) and induces the redifferentiation of plant root cells into enlarged multinucleate feeding 'giant cells' essential for nematode development. Immunolocalizations revealed the presence of the MiEFF18 protein in the salivary glands of M. incognita juveniles. In planta, MiEFF18 localizes to the nuclei of giant cells demonstrating its secretion during plant-nematode interactions. A yeast two-hybrid approach identified the nuclear ribonucleoprotein SmD1 as a MiEFF18 partner in tomato and Arabidopsis. SmD1 is an essential component of the spliceosome, a complex involved in pre-mRNA splicing and alternative splicing. RNA-seq analyses of Arabidopsis roots ectopically expressing MiEFF18 or partially impaired in SmD1 function (smd1b mutant) revealed the contribution of the effector and its target to alternative splicing and proteome diversity. The comparison with Arabidopsis galls data showed that MiEFF18 modifies the expression of genes important for giant cell ontogenesis, indicating that MiEFF18 modulates SmD1 functions to facilitate giant cell formation. Finally, Arabidopsis smd1b mutants exhibited less susceptibility to M. incognita infection, and the giant cells formed on these mutants displayed developmental defects, suggesting that SmD1 plays an important role in the formation of giant cells and is required for successful nematode infection.


Assuntos
Células Gigantes , Proteínas de Helminto , Doenças das Plantas/parasitologia , Proteínas de Plantas , Spliceossomos , Tylenchoidea , Animais , Arabidopsis , Interações Hospedeiro-Parasita , Solanum lycopersicum , Proteínas de Plantas/genética , Raízes de Plantas
2.
BMC Genomics ; 19(1): 943, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563458

RESUMO

BACKGROUND: Root-knot nematodes (RKN), genus Meloidogyne, are plant parasitic worms that have the ability to transform root vascular cylinder cells into hypertrophied, multinucleate and metabolically over-active feeding cells. Redifferentiation into feeding cells is the result of a massive transcriptional reprogramming of root cells targeted by RKN. Since RKN are able to induce similar feeding cells in roots of thousands of plant species, these worms are thought to manipulate essential and conserved plant molecular pathways. RESULTS: Small non-coding RNAs of uninfected roots and infected root galls induced by M. incognita from Arabidopsis thaliana were sequenced by high throughput sequencing. SiRNA populations were analysed by using the Shortstack algorithm. We identified siRNA clusters that are differentially expressed in infected roots and evidenced an over-representation of the 23-24 nt siRNAs in infected tissue. This size corresponds to heterochromatic siRNAs (hc-siRNAs) which are known to regulate expression of transposons and genes at the transcriptional level, mainly by inducing DNA methylation. CONCLUSIONS: Correlation of siRNA clusters expression profile with transcriptomic data identified several protein coding genes that are candidates to be regulated by siRNAs at the transcriptional level by RNA directed DNA methylation (RdDM) pathway either directly or indirectly via silencing of neighbouring transposable elements.


Assuntos
Arabidopsis/genética , Arabidopsis/parasitologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/parasitologia , RNA Interferente Pequeno/genética , Tylenchoidea/fisiologia , Animais , Interações Hospedeiro-Parasita , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Transcriptoma
3.
New Phytol ; 217(2): 687-699, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29034957

RESUMO

Root-knot nematodes, Meloidogyne spp., are obligate endoparasites that maintain a biotrophic relationship with their hosts. They infect roots as microscopic vermiform second-stage juveniles, and establish specialized feeding structures called 'giant-cells', from which they withdraw water and nutrients. The nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we compared Illumina RNA-seq transcriptomes for M. incognita obtained at various points in the lifecycle, and identified 31 genes more strongly expressed in parasitic stages than in preparasitic juveniles. We then selected candidate effectors for functional characterization. Quantitative real-time PCR and in situ hybridizations showed that the validated differentially expressed genes are predominantly specifically expressed in oesophageal glands of the nematode. We also soaked the nematodes in siRNA to silence these genes and to determine their role in pathogenicity. The silencing of the dorsal gland specific-Minc18876 and its paralogues resulted in a significant, reproducible decrease in the number of mature females with egg masses, demonstrating a potentially important role for the small glycine- and cysteine-rich effector MiSGCR1 in early stages of plant-nematode interaction. Finally, we report that MiSGCR1 suppresses plant cell death induced by bacterial or oomycete triggers of plant defense.


Assuntos
Interações Hospedeiro-Parasita , Nicotiana/parasitologia , Parasitos/fisiologia , Raízes de Plantas/parasitologia , Tylenchoidea/fisiologia , Sequência de Aminoácidos , Animais , Morte Celular , Esôfago/metabolismo , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/genética , Masculino , Especificidade de Órgãos/genética , Parasitos/genética , Células Vegetais/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Pseudomonas syringae/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Nicotiana/microbiologia , Transcriptoma/genética , Tylenchoidea/genética
4.
New Phytol ; 216(3): 882-896, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28906559

RESUMO

Root knot nematodes (RKN) are root parasites that induce the genetic reprogramming of vascular cells into giant feeding cells and the development of root galls. MicroRNAs (miRNAs) regulate gene expression during development and plant responses to various stresses. Disruption of post-transcriptional gene silencing in Arabidopsis ago1 or ago2 mutants decrease the infection rate of RKN suggesting a role for this mechanism in the plant-nematode interaction. By sequencing small RNAs from uninfected Arabidopsis roots and from galls 7 and 14 d post infection with Meloidogyne incognita, we identified 24 miRNAs differentially expressed in gall as putative regulators of gall development. Moreover, strong activity within galls was detected for five miRNA promoters. Analyses of nematode development in an Arabidopsis miR159abc mutant had a lower susceptibility to RKN, suggesting a role for the miR159 family in the plant response to M. incognita. Localization of mature miR159 within the giant and surrounding cells suggested a role in giant cell and gall. Finally, overexpression of miR159 in galls at 14 d post inoculation was associated with the repression of the miR159 target MYB33 which expression is restricted to the early stages of infection. Overall, these results implicate the miR159 in plant responses to RKN.


Assuntos
Arabidopsis/genética , Arabidopsis/parasitologia , MicroRNAs/genética , Tylenchoidea/patogenicidade , Animais , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Interações Hospedeiro-Parasita/genética , Raízes de Plantas/genética , Tumores de Planta/parasitologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
5.
Front Plant Sci ; 7: 632, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242835

RESUMO

With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes.

6.
Plant Cell Environ ; 39(7): 1396-407, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26290138

RESUMO

Secreted peptides and their specific receptors frequently orchestrate cell-to-cell communication in plants. Phytosulfokines (PSKs) are secreted tyrosine-sulphated peptide hormones, which trigger cellular dedifferentiation and redifferentiation upon binding to their membrane receptor. Biotrophic plant pathogens frequently trigger the differentiation of host cells into specialized feeding structures, which are essential for successful infection. We found that oomycete and nematode infections were characterized by the tissue-specific transcriptional regulation of genes encoding Arabidopsis PSKs and the PSK receptor 1 (PSKR1). Subcellular analysis of PSKR1 distribution showed that the plasma membrane-bound receptor internalizes after binding of PSK-α. Arabidopsis pskr1 knockout mutants were impaired in their susceptibility to downy mildew infection. Impaired disease susceptibility depends on functional salicylic acid (SA) signalling, but not on the massive up-regulation of SA-associated defence-related genes. Knockout pskr1 mutants also displayed a major impairment of root-knot nematode reproduction. In the absence of functional PSKR1, giant cells arrested their development and failed to fully differentiate. Our findings indicate that the observed restriction of PSK signalling to cells surrounding giant cells contributes to the isotropic growth and maturation of nematode feeding sites. Taken together, our data suggest that PSK signalling in Arabidopsis promotes the differentiation of host cells into specialized feeding cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Oomicetos/fisiologia , Receptores de Superfície Celular/metabolismo , Tylenchoidea/fisiologia , Animais , Arabidopsis/metabolismo , Endocitose , Hormônios Peptídicos/metabolismo , Doenças das Plantas , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Ralstonia solanacearum/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais
7.
BMC Plant Biol ; 14: 53, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24559060

RESUMO

BACKGROUND: Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. RESULTS: The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. CONCLUSIONS: This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.


Assuntos
Nematoides/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Animais , Capsicum/genética , Capsicum/parasitologia , Lactuca/genética , Lactuca/parasitologia , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...