Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Acta Histochem ; 121(3): 368-375, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30771905

RESUMO

Lentiviral transduction is a powerful tool and widely used in neuroscience research to manipulate gene expression of cells. However, the injection of lentiviral vectors in the brain is not totally benign, it potentially induces focal neuroinflammation. Upon inflammation, microglial cells get activated and can induce major changes in tissue environment, which may interfere with experimental results. In the current study, two weeks after the injection of control viral construction in the dentate gyrus (DG) of rats, an activation of microglia was detected. To access the activation status, we used a fast and accurate method of phenotype detection - measurement of fractal dimension (FD). Microglial morphology is a key indicator of neuroinflammation, therefore FD of microglial cells may serve as a reliable index of inflammation status in the brain. Here we present a detailed description of image processing procedure of images of individual microglial cells. The method allows to preserve the complex structure of microglial cells and their thin processes on the output image, which is important for accurate FD assessment.


Assuntos
Encéfalo/citologia , Giro Denteado/citologia , Microglia/citologia , Neurônios/citologia , Animais , Encéfalo/virologia , Giro Denteado/virologia , Lentivirus/isolamento & purificação , Masculino , Microglia/virologia , Neurônios/virologia , Ratos Wistar
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1608-1611, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440700

RESUMO

We present a new head mountable wireless fiber biophotometry microsystem conceived to detect fluorescent signal fluctuations correlated with neuronal activity. The proposed system incorporates all aspects of a conventional tethered fiber-based biophotometry system encompassed into a wireless microsystem. The interface includes an LED as excitation light source, a custom designed CMOS biosensor, a multimode fiber, a microcontroller (MCU), and a wireless data transceiver enclosed within a 3D-printed, small and light weight, plastic housing. Precisely, the system incorporates a new optoelectronic biosensor merging two individual building blocks, namely a low-noise sensing front-end and $\mathrm {a}2 ^{nd}$ order continuous-time $\Sigma \Delta $ modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. The proposed CMOS biosensor is implemented in $\mathrm {a}0 .18- \mu m$ CMOS technology, consuming $41 \mu W$ from $\mathrm {a}1 .8- V$ supply voltage, while achieving a peak dynamic range of $86 dB$ over a $50- Hz$ input bandwidth at a 20-kS/s sampling rate. This new interface opens new avenues for conducting in-vivo experiments with live animals.


Assuntos
Técnicas Biossensoriais , Sistema Nervoso/metabolismo , Tecnologia sem Fio , Animais , Fluorescência , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA