Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 10399, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822533

RESUMO

The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis.


Assuntos
Senescência Celular , Quebras de DNA de Cadeia Simples , Células Epiteliais/citologia , Neoplasias/genética , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
2.
Biochim Biophys Acta ; 1831(7): 1217-27, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24046862

RESUMO

Cyclooxygenase 2 and release of prostaglandin E2 are involved in many responses including inflammation and are upregulated during cellular senescence. However, little is known about the role of lipid inflammatory mediators in senescence. Here, we investigated the mechanism by which the COX-2/PGE2 axis induces senescence. Using the NS398 specific inhibitor of COX-2, we provide evidence that reactive oxygen species by-produced by the COX-2 enzymatic activity are negligible in front of the total senescence-associated oxidative stress. We therefore investigated the role of PGE2 by invalidating the PGE2 synthases downstream of COX-2, or the specific PGE2 receptors, or by applying PGE2 or specific agonists or antagonists. We evaluated the effect on senescence by evaluating the senescence-associated proliferation arrest, the percentage of senescence-associated beta-galactosidase-positive cells, and the expression of senescent molecular markers such as IL-6 and MCP1. We show that PGE2 acting on its EP specific receptors is able to induce both the onset of senescence and the maintenance of the phenotype. It did so only when the PGE2/lactate transporter activity was enhanced, indicating that PGE2 acts on senescence more via the pool of intracellular EP receptors than via those localized at the cell surface. Treatment with agonists, antagonists and silencing of the EP receptors by siRNA revealed that EP3 was the most involved in transducing the intracrine effects of PGE2. Immunofluorescence experiments confirmed that EP3 was more localized in the cytoplasm than at the cell surface. Taken together, these results suggest that COX-2 contributes to the establishment and maintenance of senescence of normal human fibroblasts via an independent-ROS and a dependent-PGE2/EPs intracrine pathway.


Assuntos
Senescência Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/citologia , Transdução de Sinais , Linhagem Celular , Derme/citologia , Fibroblastos/metabolismo , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo
3.
PLoS One ; 8(5): e63607, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675494

RESUMO

The incidence of carcinoma increases greatly with aging, but the cellular and molecular mechanisms underlying this correlation are only partly known. It is established that senescent fibroblasts promote the malignant progression of already-transformed cells through secretion of inflammatory mediators. We investigated here whether the senescent fibroblast secretome might have an impact on the very first stages of carcinogenesis. We chose the cultured normal primary human epidermal keratinocyte model, because after these cells reach the senescence plateau, cells with transformed and tumorigenic properties systematically and spontaneously emerge from the plateau. In the presence of medium conditioned by autologous senescent dermal fibroblasts, a higher frequency of post-senescence emergence was observed and the post-senescence emergent cells showed enhanced migratory properties and a more marked epithelial-mesenchymal transition. Using pharmacological inhibitors, siRNAs, and blocking antibodies, we demonstrated that the MMP-1 and MMP-2 matrix metalloproteinases, known to participate in late stages of cancer invasion and metastasis, are responsible for this enhancement of early migratory capacity. We present evidence that MMPs act by activating the protease-activated receptor 1 (PAR-1), whose expression is specifically increased in post-senescence emergent keratinocytes. The physiopathological relevance of these results was tested by analyzing MMP activity and PAR-1 expression in skin sections. Both were higher in skin sections from aged subjects than in ones from young subjects. Altogether, our results suggest that during aging, the dermal and epidermal skin compartments might be activated coordinately for initiation of skin carcinoma, via a paracrine axis in which MMPs secreted by senescent fibroblasts promote very early epithelial-mesenchymal transition of keratinocytes undergoing transformation and oversynthesizing the MMP-activatable receptor PAR-1.


Assuntos
Transformação Celular Neoplásica/metabolismo , Senescência Celular , Fibroblastos/metabolismo , Metaloproteinases da Matriz/metabolismo , Comunicação Parácrina , Receptor PAR-1/metabolismo , Pele/metabolismo , Adulto , Movimento Celular/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Células Cultivadas , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Queratinócitos/metabolismo , Metaloproteinase 1 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinases da Matriz/genética , Receptor PAR-1/genética , Pele/patologia , Fator de Crescimento Transformador beta1/farmacologia , Adulto Jovem
4.
PLoS One ; 5(9): e12712, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20856861

RESUMO

Senescence is a state of growth arrest resulting mainly from telomere attrition and oxidative stress. It ultimately leads to cell death. We have previously shown that, in keratinocytes, senescence is induced by NF-kappaB activation, MnSOD upregulation and H(2)O(2) overproduction. We have also shown that senescent keratinocytes do not die by apoptosis but as a result of high macroautophagic activity that targets the primary vital cell components. Here, we investigated the mechanisms that activate this autophagic cell death program. We show that corpses occurring at the senescence plateau display oxidatively-damaged mitochondria and nucleus that colocalize with autophagic vacuoles. The occurrence of such corpses was decreased by specifically reducing the H(2)O(2) level with catalase, and, conversely, reproduced by overexpressing MnSOD or applying subtoxic doses of H(2)O(2). This H(2)O(2)-induced cell death did occur through autophagy since it was accompanied by an accumulation of autophagic vesicles as evidenced by Lysotracker staining, LC3 vesiculation and transmission electron microscopy. Most importantly, it was partly abolished by 3-methyladenine, the specific inhibitor of autophagosome formation, and by anti-Atg5 siRNAs. Taken together these results suggest that autophagic cell death is activated in senescent keratinocytes because of the upregulation of MnSOD and the resulting accumulation of oxidative damages to nucleus and mitochondria.


Assuntos
Autofagia , Queratinócitos/citologia , Queratinócitos/enzimologia , Superóxido Dismutase/metabolismo , Regulação para Cima , Morte Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Senescência Celular , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Queratinócitos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo , Superóxido Dismutase/genética
5.
EMBO J ; 29(2): 376-86, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19927127

RESUMO

Senescence is an irreversible cell-cycle arrest that is elicited by a wide range of factors, including replicative exhaustion. Emerging evidences suggest that cellular senescence contributes to ageing and acts as a tumour suppressor mechanism. To identify novel genes regulating senescence, we performed a loss-of-function screen on normal human diploid fibroblasts. We show that downregulation of the AMPK-related protein kinase 5 (ARK5 or NUAK1) results in extension of the cellular replicative lifespan. Interestingly, the levels of NUAK1 are upregulated during senescence whereas its ectopic expression triggers a premature senescence. Cells that constitutively express NUAK1 suffer gross aneuploidies and show diminished expression of the genomic stability regulator LATS1, whereas depletion of NUAK1 with shRNA exerts opposite effects. Interestingly, a dominant-negative form of LATS1 phenocopies NUAK1 effects. Moreover, we show that NUAK1 phosphorylates LATS1 at S464 and this has a role in controlling its stability. In summary, our work highlights a novel role for NUAK1 in the control of cellular senescence and cellular ploidy.


Assuntos
Senescência Celular , Fibroblastos/citologia , Ploidias , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética
6.
Cancer Res ; 69(20): 7917-25, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19826058

RESUMO

Studies on human fibroblasts have led to viewing senescence as a barrier against tumorigenesis. Using keratinocytes, we show here that partially transformed and tumorigenic cells systematically and spontaneously emerge from senescent cultures. We show that these emerging cells are generated from senescent cells, which are still competent for replication, by an unusual budding-mitosis mechanism. We further present data implicating reactive oxygen species that accumulate during senescence as a potential mutagenic motor of this post-senescence emergence. We conclude that senescence and its associated oxidative stress could be a tumor-promoting state for epithelial cells, potentially explaining why the incidence of carcinogenesis dramatically increases with advanced age.


Assuntos
Transformação Celular Neoplásica , Senescência Celular , Dano ao DNA , Neoplasias/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Adenoviridae , Adolescente , Adulto , Elementos Alu , Western Blotting , Proliferação de Células , Células Cultivadas , Ensaio Cometa , Sondas de DNA , Epiderme/metabolismo , Epiderme/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Imunofluorescência , Humanos , Hibridização In Situ , Cariotipagem , Queratinócitos/metabolismo , Queratinócitos/patologia , Pessoa de Meia-Idade , Neoplasias/metabolismo , Superóxido Dismutase/metabolismo , Adulto Jovem
7.
Cancer Res ; 69(10): 4101-6, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19435923

RESUMO

Normal cell growth can be permanently blocked when cells enter a state known as senescence. This phenomenon can be triggered by various stresses, such as replicative exhaustion, oncogenic stimulation, or oxidative stress. Senescence prevents transmission of aberrant signals to daughter cells and thus prevents irreversible damage that could favor cancer development. To identify new genetic events controlling senescence, we have performed a loss-of-function genetic screen on normal human cells. We report that knockdown of topoisomerase I (Top1) results in an increased replicative potential associated with a decrease in senescence markers and a diminished DNA damage response. In addition, Top1 depletion also favors a bypass of oncogene-induced senescence. Conversely, Top1 constitutive expression induces growth arrest, the appearance of a senescence marker, and an activation of the DNA damage response. Altogether, these results reveal an unanticipated function of Top1 in regulating senescence.


Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Senescência Celular/fisiologia , DNA Topoisomerases Tipo I/genética , Testes Genéticos/métodos , Ciclo Celular/genética , Linhagem Celular , Senescência Celular/genética , Dano ao DNA , Primers do DNA , Homeostase , Humanos , Pulmão , Reação em Cadeia da Polimerase/métodos , Transfecção
8.
Am J Pathol ; 174(2): 423-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19147823

RESUMO

Normal cells reach senescence after a specific time and number of divisions, leading ultimately to cell death. Although escape from this fate may be a requisite step in neoplastic transformation, the mechanisms governing senescent cell death have not been well investigated. We show here, using normal human epidermal keratinocytes, that no apoptotic markers appear with senescence. In contrast, the expression of several proteins involved in the regulation of macroautophagy, notably Beclin-1 and Bcl-2, was found to change with senescence. The corpses occurring at the senescence growth plateau displayed a large central area delimited by the cytokeratin network that contained a huge quantity of autophagic vacuoles, the damaged nucleus, and most mitochondria. 3-methyladenine, an inhibitor of autophagosome formation, but not the caspase inhibitor zVAD, prevented senescent cell death. We conclude that senescent cells do not die by apoptosis, but as a result of high macroautophagic activity that targets the primary vital cell components.


Assuntos
Autofagia/fisiologia , Queratinócitos/patologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteína Beclina-1 , Western Blotting , Senescência Celular/fisiologia , Feminino , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Humanos , Marcação In Situ das Extremidades Cortadas , Queratinócitos/fisiologia , Proteínas de Membrana/biossíntese , Microscopia Eletrônica de Transmissão , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese
9.
Ann N Y Acad Sci ; 1119: 51-63, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18056954

RESUMO

As a result of time and cumulative divisions in vitro and in vivo, normal cells enter an irreversible nonproliferative state termed replicative or cellular senescence that is thought to contribute to organism aging. Both telomere shortening and cumulative oxidative damage were shown to contribute to senescence, probably acting at different degrees according to proliferation index, cell type, or environment. Because of its associated cohort of damages and irreversible cell-cycle arrest induced by shortened telomeres, senescence is commonly considered as a tumor-suppressor mechanism that stops the proliferation of genetically altered cells (i.e., potentially cancerous). However, the incidence of the most frequent cancers in humans, carcinomas, exponentially increases with age; the phenotypes of progeroid syndromes are often associated with an increase in tumor incidence, and inversely when aging is delayed by caloric restriction, the cancer incidence decreases. How can this positive link between aging and tumorigenesis be explained if senescence is a tumor-suppressor mechanism? The present article considers data and arguments supporting a protumoral role of senescence. We focus on the importance of the oxidative damage that targets DNA during senescence. Indeed, because of its mutagenic effects, oxidative damage could affect oncogenes and/or tumor-suppressor genes in some senescent cells, hence promoting their evolution toward initiated cancer cells. This mechanism could be particularly relevant for age-associated carcinomas because senescence in epithelial cells is driven more by oxidative stress than by telomere shortening.


Assuntos
Carcinoma/metabolismo , Transformação Celular Neoplásica/metabolismo , Senescência Celular , Dano ao DNA , Células Epiteliais/metabolismo , Estresse Oxidativo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Restrição Calórica , Carcinoma/patologia , Divisão Celular , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Genes Supressores de Tumor , Humanos , Oncogenes , Oxirredução , Telômero/metabolismo
10.
Exp Cell Res ; 313(14): 3046-56, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17560572

RESUMO

Cyclooxygenase-2 (COX-2) is an inducible enzyme of the prostaglandin biosynthesis pathway. It is involved in many stress responses, and its activity can produce oxidative damage, suggesting it could participate in senescence. In this study, COX-2 expression is shown to increase during senescence of normal human dermal or prostatic fibroblasts, and the ensuing prostaglandin E(2) (PGE(2)) production to increase about 10-fold. Enhancing this COX-2 activity by supplying exogenous arachidonic acid accelerates the occurrence of the major markers of senescence, cell-size increase, spreading, senescence-associated-beta-galactosidase (SA-beta-Gal) activity and growth plateau. Conversely, blocking this COX-2 activity with the specific inhibitor NS398 partially inhibited the occurrence of these markers. COX-2 expression and PGE(2) production are also increased about 10-fold during both NF-kappaB- or H(2)O(2)-induced senescence. Using NS398 or small interferent RNA specifically targeting COX-2 attenuated the appearance of the SA-beta-Gal activity and growth arrest in both stress situations. Taken together, these findings indicate that COX-2 is highly up-regulated during both normal and stress-induced fibroblast senescence and contributes to the establishment of the senescent characteristics.


Assuntos
Senescência Celular/fisiologia , Ciclo-Oxigenase 2/metabolismo , Fibroblastos/fisiologia , Estresse Oxidativo , Animais , Células Cultivadas , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/metabolismo , Dinoprostona/metabolismo , Fibroblastos/citologia , Inativação Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , NF-kappa B/metabolismo , Nitrobenzenos/metabolismo , Oxidantes/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Sulfonamidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...