Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731399

RESUMO

The antibacterial effects of a selection of volatile fatty acids (acetic, propionic, butyric, valeric, and caproic acids) relevant to anaerobic digestion were investigated at 1, 2 and 4 g/L. The antibacterial effects were characterised by the dynamics of Enterococcus faecalis NCTC 00775, Escherichia coli JCM 1649 and Klebsiella pneumoniae A17. Mesophilic anaerobic incubation to determine the minimum bactericidal concentration (MBC) and median lethal concentration of the VFAs was carried out in Luria Bertani broth at 37 °C for 48 h. Samples collected at times 0, 3, 6, 24 and 48 h were used to monitor bacterial kinetics and pH. VFAs at 4 g/L demonstrated the highest bactericidal effect (p < 0.05), while 1 g/L supported bacterial growth. The VFA cocktail was the most effective, while propionic acid was the least effective. Enterococcus faecalis NCTC 00775 was the most resistant strain with the VFAs MBC of 4 g/L, while Klebsiella pneumoniae A17 was the least resistant with the VFAs MBC of 2 g/L. Allowing a 48 h incubation period led to more log decline in the bacterial numbers compared to earlier times. The VFA cocktail, valeric, and caproic acids at 4 g/L achieved elimination of the three bacteria strains, with over 7 log10 decrease within 48 h.


Assuntos
Antibacterianos , Enterococcus faecalis , Ácidos Graxos Voláteis , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Anaerobiose , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Propionatos/farmacologia , Concentração de Íons de Hidrogênio , Ácidos Pentanoicos/farmacologia
2.
Microorganisms ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543654

RESUMO

The effects of the inoculum (anaerobic digestion effluent) to substrate (simulated food waste) ratio (ISR) 4.00 to 0.25 on putative pathogens and microbial kinetics during batch mesophilic anaerobic digestion were investigated. Red fluorescent protein labelled (RFPAKN132) Escherichia coli JM105 was introduced as a marker species, and together with the indigenous Clostridium sp., Enterococcus sp., Escherichia coli, and total coliforms were used to monitor pathogen death kinetics. Quantitative polymerase chain reaction was also used to estimate the bacterial, fungal, and methanogenic gene copies. All the ISRs eliminated E. coli and other coliforms (4 log10 CFU/mL), but ISR 0.25 achieved this within the shortest time (≤2 days), while ISR 1.00 initially supported pathogen proliferation. Up to 1.5 log10 CFU/mL of Clostridium was reduced by acidogenic conditions (ISR 0.25 and 0.50), while Enterococcus species were resistant to the digestion conditions. Fungal DNA was reduced (≥5 log10 copies/mL) and was undetectable in ISRs 4.00, 2.00, and 0.50 at the end of the incubation period. This study has demonstrated that ISR influenced the pH of the digesters during batch mesophilic anaerobic digestion, and that acidic and alkaline conditions achieved by the lower (0.50 and 0.25) and higher (4.00 and 2.00) ISRs, respectively, were critical to the sanitisation of waste.

4.
Radiology ; 307(4): e230441, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37097133

RESUMO

Background Radiology is a major contributor to health care's climate footprint due to energy-intensive devices, particularly MRI, which uses the most energy. Purpose To determine the energy, cost, and carbon savings that could be achieved through different scanner power management strategies. Materials and Methods In this retrospective evaluation, four outpatient MRI scanners from three vendors were individually equipped with power meters (1-Hz sampling rate). Power measurement logs were extracted for 39 days. Data were segmented into off, idle, prepared-to-scan, scan, or power-save modes for each scanner. Energy, cost (assuming a mean cost of $0.14 per kilowatt hour), and carbon savings were calculated for the lowest scanner activity modes. Data were summarized using descriptive statistics and 95% CIs. Results Projected annual energy consumption per scanner ranged from 82.7 to 171.1 MW-hours, with 72%-91% defined as nonproductive. Power draws for each mode were measured as 6.4 kW ± 0.1 (SD; power-save mode), 7.3 kW ± 0.6 to 9.7 kW ± 0.2 (off), 9.5 kW ± 0.9 to 14.5 kW ± 0.5 (idle), 17.3 kW ± 0.5 to 25.6 kW ± 0.6 (prepared-to-scan mode), and 28.6 kW ± 8.6 to 48.3 kW ± 11.8 (scan mode). Switching MRI units from idle to off mode for 12 hours overnight reduced power consumption by 25%-33%, translating to a potential annual savings of 12.3-21.0 MW-hours, $1717-$2943, and 8.7-14.9 metric tons of carbon dioxide (CO2) equivalent (MTCO2eq). The power-save mode further reduced consumption by 22%-28% compared with off mode, potentially saving an additional 8.8-11.4 MW-hours, $1226-$1594, and 6.2-8.1 MTCO2eq per year for 12 hours overnight. Implementation of a power-save mode for 12 hours overnight in all outpatient MRI units in the United States could save U.S. health care 58 863.2-76 288.2 MW-hours, $8.2-$10.7 million, and 41 606.4-54 088.3 MTCO2eq. Conclusion Powering down MRI units made radiology departments more energy efficient and showed substantial sustainability and cost benefits. © RSNA, 2023 Supplemental material is available for this article. See also the article by Vosshenrich and Heye in this issue.


Assuntos
Pegada de Carbono , Radiologia , Estados Unidos , Humanos , Redução de Custos , Estudos Retrospectivos , Imageamento por Ressonância Magnética
5.
Acad Radiol ; 30(4): 625-630, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36400705

RESUMO

The healthcare sector generates approximately 10% of the total carbon emissions in the United States. Radiology is thought to be a top contributor to the healthcare carbon footprint due to high energy-consuming devices and waste from interventional procedures. In this article, we provide a background on Radiology's environmental impact, describe why hospitals should add sustainability as a quality measure, and give a framework for radiologists to reduce the carbon footprint through quality improvement and collaboration.


Assuntos
Radiologia , Humanos , Estados Unidos , Pegada de Carbono , Atenção à Saúde
7.
Expert Rev Med Devices ; 19(10): 763-778, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36373162

RESUMO

INTRODUCTION: Image-guided endovascular interventions, performed using the insertion and navigation of catheters through the vasculature, have been increasing in number over the years, as minimally invasive procedures continue to replace invasive surgical procedures. Such endovascular interventions are almost exclusively performed under x-ray fluoroscopy, which has the best spatial and temporal resolution of all clinical imaging modalities. Magnetic resonance imaging (MRI) offers unique advantages and could be an attractive alternative to conventional x-ray guidance, but also brings with it distinctive challenges. AREAS COVERED: In this review, the benefits and limitations of MRI-guided endovascular interventions are addressed, systems and devices for guiding such interventions are summarized, and clinical applications are discussed. EXPERT OPINION: MRI-guided endovascular interventions are still relatively new to the interventional radiology field, since significant technical hurdles remain to justify significant costs and demonstrate safety, design, and robustness. Clinical applications of MRI-guided interventions are promising but their full potential may not be realized until proper tools designed to function in the MRI environment are available. Translational research and further preclinical studies are needed before MRI-guided interventions will be practical in a clinical interventional setting.


Assuntos
Catéteres , Imageamento por Ressonância Magnética , Humanos
8.
Neurosurgery ; 91(5): 717-725, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069560

RESUMO

BACKGROUND: Interventional MRI (iMRI)-guided implantation of deep brain stimulator (DBS) leads has been developed to treat patients with Parkinson's disease (PD) without the need for awake testing. OBJECTIVE: Direct comparisons of targeting accuracy and clinical outcomes for awake stereotactic with asleep iMRI-DBS for PD are limited. METHODS: We performed a retrospective review of patients with PD who underwent awake or iMRI-guided DBS surgery targeting the subthalamic nucleus or globus pallidus interna between 2013 and 2019 at our institution. Outcome measures included Unified Parkinson's Disease Rating Scale Part III scores, levodopa equivalent daily dose, radial error between intended and actual lead locations, stimulation parameters, and complications. RESULTS: Of the 218 patients included in the study, the iMRI cohort had smaller radial errors (iMRI: 1.27 ± 0.72 mm, awake: 1.59 ± 0.96 mm, P < .01) and fewer lead passes (iMRI: 1.0 ± 0.16, awake: 1.2 ± 0.41, P < .01). Changes in Unified Parkinson's Disease Rating Scale were similar between modalities, but awake cases had a greater reduction in levodopa equivalent daily dose than iMRI cases ( P < .01), which was attributed to the greater number of awake subthalamic nucleus cases on multivariate analysis. Effective clinical contacts used for stimulation, side effect thresholds, and complication rates were similar between modalities. CONCLUSION: Although iMRI-DBS may result in more accurate lead placement for intended target compared with awake-DBS, clinical outcomes were similar between surgical approaches. Ultimately, patient preference and surgeon experience with a given DBS technique should be the main factors when determining the "best" method for DBS implantation.


Assuntos
Estimulação Encefálica Profunda , Imagem por Ressonância Magnética Intervencionista , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , São Francisco , Resultado do Tratamento , Vigília
9.
JAMA Neurol ; 78(8): 982-992, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228047

RESUMO

Importance: Moderate to severe traumatic brain injury (msTBI) is a major cause of death and disability in the US and worldwide. Few studies have enabled prospective, longitudinal outcome data collection from the acute to chronic phases of recovery after msTBI. Objective: To prospectively assess outcomes in major areas of life function at 2 weeks and 3, 6, and 12 months after msTBI. Design, Setting, and Participants: This cohort study, as part of the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study, was conducted at 18 level 1 trauma centers in the US from February 2014 to August 2018 and prospectively assessed longitudinal outcomes, with follow-up to 12 months postinjury. Participants were patients with msTBI (Glasgow Coma Scale scores 3-12) extracted from a larger group of patients with mild, moderate, or severe TBI who were enrolled in TRACK-TBI. Data analysis took place from October 2019 to April 2021. Exposures: Moderate or severe TBI. Main Outcomes and Measures: The Glasgow Outcome Scale-Extended (GOSE) and Disability Rating Scale (DRS) were used to assess global functional status 2 weeks and 3, 6, and 12 months postinjury. Scores on the GOSE were dichotomized to determine favorable (scores 4-8) vs unfavorable (scores 1-3) outcomes. Neurocognitive testing and patient reported outcomes at 12 months postinjury were analyzed. Results: A total of 484 eligible patients were included from the 2679 individuals in the TRACK-TBI study. Participants with severe TBI (n = 362; 283 men [78.2%]; median [interquartile range] age, 35.5 [25-53] years) and moderate TBI (n = 122; 98 men [80.3%]; median [interquartile range] age, 38 [25-53] years) were comparable on demographic and premorbid variables. At 2 weeks postinjury, 36 of 290 participants with severe TBI (12.4%) and 38 of 93 participants with moderate TBI (41%) had favorable outcomes (GOSE scores 4-8); 301 of 322 in the severe TBI group (93.5%) and 81 of 103 in the moderate TBI group (78.6%) had moderate disability or worse on the DRS (total score ≥4). By 12 months postinjury, 142 of 271 with severe TBI (52.4%) and 54 of 72 with moderate TBI (75%) achieved favorable outcomes. Nearly 1 in 5 participants with severe TBI (52 of 270 [19.3%]) and 1 in 3 with moderate TBI (23 of 71 [32%]) reported no disability (DRS score 0) at 12 months. Among participants in a vegetative state at 2 weeks, 62 of 79 (78%) regained consciousness and 14 of 56 with available data (25%) regained orientation by 12 months. Conclusions and Relevance: In this study, patients with msTBI frequently demonstrated major functional gains, including recovery of independence, between 2 weeks and 12 months postinjury. Severe impairment in the short term did not portend poor outcomes in a substantial minority of patients with msTBI. When discussing prognosis during the first 2 weeks after injury, clinicians should be particularly cautious about making early, definitive prognostic statements suggesting poor outcomes and withdrawal of life-sustaining treatment in patients with msTBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Atividades Cotidianas , Adulto , Estudos de Coortes , Avaliação da Deficiência , Feminino , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estado Vegetativo Persistente , Prognóstico , Estudos Prospectivos , Recuperação de Função Fisiológica , Resultado do Tratamento , Suspensão de Tratamento
10.
JAMA Neurol ; 78(9): 1137-1148, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279565

RESUMO

Importance: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood. Objective: To identify pathological CT features associated with adverse outcomes after mTBI. Design, Setting, and Participants: The longitudinal, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements. Glasgow Outcome Scale-Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months postinjury. External validation of results was performed via the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed from February 2020 to February 2021. Exposures: Acute nonpenetrating head trauma. Main Outcomes and Measures: Frequency, co-occurrence, and clustering of CT features; incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months. Results: In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658 men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma; intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion, subarachnoid hemorrhage, and/or subdural hematoma features were associated with incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in TRACK-TBI: neuropsychiatric history, 1.43 [95% CI .98-2.10] vs contusion, subarachnoid hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally validated in 2594 patients with mTBI enrolled in the CENTER-TBI study. Conclusions and Relevance: In this study, pathological CT features carried different prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were associated with worse outcomes than others. These results support that patients with mTBI and these CT features need TBI-specific education and systematic follow-up.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Recuperação de Função Fisiológica , Adulto , Idoso , Concussão Encefálica/complicações , Estudos de Coortes , Feminino , Humanos , Hemorragias Intracranianas/diagnóstico por imagem , Hemorragias Intracranianas/etiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Tomografia Computadorizada por Raios X
11.
MAGMA ; 34(5): 659-666, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33839985

RESUMO

OBJECTIVES: To determine the intra-individual flow variation in serially acquired studies, and the influence of this variation on subsequent hemodynamic simulations using the inlet flow as a boundary condition. Author: Kindly check and confirm whether the corresponding authors are correctly identified.Confirmed. MATERIALS AND METHODS: This prospective study included 51 patients (37 females and 14 males) with unruptured intracranial aneurysms who have received more than three times follow-up of 2D phase-contrast MR. The flow and velocity parameters were extracted to calculate the reproducibility and variation. Patient-specific computational fluid dynamics simulations were performed using the measured flows. RESULTS: Intraclass correlation coefficients for mean and maximum velocity and flow parameters ranged from 0.77 to 0.90. A 10% CV of mean flow was identified. Variations of 10% in inlet flow resulted in hemodynamic changes including 41.41% of peak systolic wall shear stress; 39.13% of end-diastolic wall shear stress; 2.79% of low shear area at peak systole; 2.12% of low shear area at end diastole: 47.57% of time-averaged wall shear stress; and 0.17% of oscillatory shear index. CONCLUSION: This study identified 10% of intra-individual mean flow variation on phase-contrast MR. Intra-individual flow variation resulted in a non-negligible variation in wall shear stress, but relatively small variation in low shear area in hemodynamic calculations.


Assuntos
Hemodinâmica , Aneurisma Intracraniano , Feminino , Humanos , Hidrodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Modelos Cardiovasculares , Estudos Prospectivos , Reprodutibilidade dos Testes , Estresse Mecânico
12.
JAMA Netw Open ; 4(4): e213046, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822070

RESUMO

Importance: Knowledge of differences in mild traumatic brain injury (mTBI) recovery by sex and age may inform individualized treatment of these patients. Objective: To identify sex-related differences in symptom recovery from mTBI; secondarily, to explore age differences within women, who demonstrate poorer outcomes after TBI. Design, Setting, and Participants: The prospective cohort study Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) recruited 2000 patients with mTBI from February 26, 2014, to July 3, 2018, and 299 patients with orthopedic trauma (who served as controls) from January 26, 2016, to July 27, 2018. Patients were recruited from 18 level I trauma centers and followed up for 12 months. Data were analyzed from August 19, 2020, to March 3, 2021. Exposures: Patients with mTBI (defined by a Glasgow Coma Scale score of 13-15) triaged to head computed tomography in 24 hours or less; patients with orthopedic trauma served as controls. Main Outcomes and Measures: Measured outcomes included (1) the Rivermead Post Concussion Symptoms Questionnaire (RPQ), a 16-item self-report scale that assesses postconcussion symptom severity over the past 7 days relative to preinjury; (2) the Posttraumatic Stress Disorder Checklist for the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (PCL-5), a 20-item test that measures the severity of posttraumatic stress disorder symptoms; (3) the Patient Health Questionnaire-9 (PHQ-9), a 9-item scale that measures depression based on symptom frequency over the past 2 weeks; and (4) the Brief Symptom Inventory-18 (BSI-18), an 18-item scale of psychological distress (split into Depression and Anxiety subscales). Results: A total of 2000 patients with mTBI (1331 men [67%; mean (SD) age, 41.0 (17.3) years; 1026 White (78%)] and 669 women [33%; mean (SD) age, 43.0 (18.5) years; 505 (76%) White]). After adjustment of multiple comparisons, significant TBI × sex interactions were observed for cognitive symptoms (B = 0.76; 5% false discovery rate-corrected P = .02) and somatic RPQ symptoms (B = 0.80; 5% false discovery rate-corrected P = .02), with worse symptoms in women with mTBI than men, but no sex difference in symptoms in control patients with orthopedic trauma. Within the female patients evaluated, there was a significant TBI × age interaction for somatic RPQ symptoms, which were worse in female patients with mTBI aged 35 to 49 years compared with those aged 17 to 34 years (B = 1.65; P = .02) or older than 50 years (B = 1.66; P = .02). Conclusions and Relevance: This study found that women were more vulnerable than men to persistent mTBI-related cognitive and somatic symptoms, whereas no sex difference in symptom burden was seen after orthopedic injury. Postconcussion symptoms were also worse in women aged 35 to 49 years than in younger and older women, but further investigation is needed to corroborate these findings and to identify the mechanisms involved. Results suggest that individualized clinical management of mTBI should consider sex and age, as some women are especially predisposed to chronic postconcussion symptoms even 12 months after injury.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Síndrome Pós-Concussão/etiologia , Índice de Gravidade de Doença , Adulto , Idoso , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Disfunção Cognitiva/psicologia , Feminino , Escala de Coma de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome Pós-Concussão/psicologia , Estudos Prospectivos , Medição de Risco , Distribuição por Sexo
13.
JAMA Netw Open ; 4(3): e213467, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33783518

RESUMO

Importance: Heterogeneity across patients with traumatic brain injury (TBI) presents challenges for clinical care and intervention design. Identifying distinct clinical phenotypes of TBI soon after injury may inform patient selection for precision medicine clinical trials. Objective: To investigate whether distinct neurobehavioral phenotypes can be identified 2 weeks after TBI and to characterize the degree to which early neurobehavioral phenotypes are associated with 6-month outcomes. Design, Setting, and Participants: This prospective cohort study included patients presenting to 18 US level 1 trauma centers within 24 hours of TBI from 2014 to 2019 as part of the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study. Data were analyzed from January 28, 2020, to January 11, 2021. Exposures: TBI. Main Outcomes and Measures: Latent profiles (LPs) were derived from common dimensions of neurobehavioral functioning at 2 weeks after injury, assessed through National Institutes of Health TBI Common Data Elements (ie, Brief Symptom Inventory-18, Patient Health Questionnaire-9 Depression checklist, Posttraumatic Stress Disorder Checklist for DSM-5, PROMIS Pain Intensity scale, Insomnia Severity Index, Rey Auditory Verbal Learning Test, Wechsler Adult Intelligence Scale-Fourth Edition Coding and Symbol Search subtests, Trail Making Test, and NIH Toolbox Cognitive Battery Pattern Comparison Processing Speed, Dimensional Change Card Sort, Flanker Inhibitory Control and Attention, and Picture Sequence Memory subtests). Six-month outcomes were the Satisfaction With Life Scale (SWLS), Quality of Life after Brain Injury-Overall Scale (QOLIBRI-OS), Glasgow Outcome Scale-Extended (GOSE), and Rivermead Post-Concussion Symptoms Questionnaire (RPQ). Results: Among 1757 patients with TBI included, 1184 (67.4%) were men, and the mean (SD) age was 39.9 (17.0) years. LP analysis revealed 4 distinct neurobehavioral phenotypes at 2 weeks after injury: emotionally resilient (419 individuals [23.8%]), cognitively impaired (368 individuals [20.9%]), cognitively resilient (620 individuals [35.3%]), and neuropsychiatrically distressed (with cognitive weaknesses; 350 individuals [19.9%]). Adding LP group to models including demographic characteristics, medical history, Glasgow Coma Scale score, and other injury characteristics was associated with significantly improved estimation of association with 6-month outcome (GOSE R2 increase = 0.09-0.19; SWLS R2 increase = 0.12-0.22; QOLIBRI-OS R2 increase = 0.14-0.32; RPQ R2 = 0.13-0.34). Conclusions and Relevance: In this cohort study of patients with TBI presenting to US level-1 trauma centers, qualitatively distinct profiles of symptoms and cognitive functioning were identified at 2 weeks after TBI. These distinct phenotypes may help optimize clinical decision-making regarding prognosis, as well as selection and stratification for randomized clinical trials.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Cognição/fisiologia , Qualidade de Vida , Adulto , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Feminino , Seguimentos , Escala de Coma de Glasgow , Humanos , Masculino , Estudos Prospectivos , Fatores de Tempo
14.
J Neural Eng ; 18(5)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33740780

RESUMO

Objective.The effectiveness of deep brain stimulation (DBS) depends on electrode placement accuracy, which can be compromised by brain shift during surgery. While there have been efforts in assessing the impact of electrode misplacement due to brain shift using preop- and postop-imaging data, such analysis using preop- and intraop-imaging data via biophysical modeling has not been conducted. This work presents a preliminary study that applies a multi-physics analysis framework using finite element biomechanical and bioelectric models to examine the impact of realistic intraoperative shift on neural pathways determined by tractography.Approach.The study examined six patients who had undergone interventional magnetic resonance-guided DBS surgery. The modeling framework utilized a biomechanical approach to update preoperative MR to reflect shift-induced anatomical changes. Using this anatomically deformed image and its undeformed counterpart, bioelectric effects from shifting electrode leads could be simulated and neural activation differences were approximated. Specifically, for each configuration, volume of tissue activation was computed and subsequently used for tractography estimation. Total tract volume and overlapping volume with motor regions as well as connectivity profile were compared. In addition, volumetric overlap between different fiber bundles among configurations was computed and correlated to estimated shift.Main results.The study found deformation-induced differences in tract volume, motor region overlap, and connectivity behavior, suggesting the impact of shift. There is a strong correlation (R= -0.83) between shift from intended target and intended neural pathway recruitment, where at threshold of ∼2.94 mm, intended recruitment completely degrades. The determined threshold is consistent with and provides quantitative support to prior observations and literature that deviations of 2-3 mm are detrimental.Significance.The findings support and advance prior studies and understanding to illustrate the need to account for shift in DBS and the potentiality of computational modeling for estimating influence of shift on neural activation.


Assuntos
Estimulação Encefálica Profunda , Encéfalo/cirurgia , Estimulação Encefálica Profunda/métodos , Análise de Elementos Finitos , Humanos , Vias Neurais , Física
15.
J Neurosurg ; 135(3): 806-814, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33450737

RESUMO

OBJECTIVE: Direct visualization of the ventral intermediate nucleus (VIM) of the thalamus on standard MRI sequences remains elusive. Therefore, deep brain stimulation (DBS) surgery for essential tremor (ET) indirectly targets the VIM using atlas-derived consensus coordinates and requires awake intraoperative testing to confirm clinical benefits. The objective of this study was to evaluate the utility of proton density (PD)-weighted MRI and tractography of the intersecting dentato-rubro-thalamic tract (DRTT) for direct "intersectional" targeting of the VIM in ET. METHODS: DBS targets were selected by identifying the VIM on PD-weighted images relative to the DRTT in 2 patients with ET. Tremor reduction was confirmed with intraoperative clinical testing. Intended target coordinates based on the direct intersectional targeting technique were compared with consensus coordinates obtained with indirect targeting. Pre- and postoperative tremor scores were assessed using the Fahn-Tolosa-Marin tremor rating scale (TRS). RESULTS: Planned DBS coordinates based on direct versus indirect targeting of the VIM differed in both the anteroposterior (range 0 to 2.3) and lateral (range -0.7 to 1) directions. For 1 patient, indirect targeting-without PD-weighted visualization of the VIM and DRTT-would have likely resulted in suboptimal electrode placement within the VIM. At the 3-month follow-up, both patients demonstrated significant improvement in tremor symptoms subjectively and according to the TRS (case 1: 68%, case 2: 72%). CONCLUSIONS: Direct intersectional targeting of the VIM using PD-weighted imaging and DRTT tractography is a feasible method for DBS placement in patients with ET. These advanced targeting techniques can supplement awake intraoperative testing or be used independently in asleep cases to improve surgical efficiency and confidence.

16.
Radiology ; 296(2): 250-262, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573388

RESUMO

MRI is a valuable clinical and research tool for patients undergoing deep brain stimulation (DBS). However, risks associated with imaging DBS devices have led to stringent regulations, limiting the clinical and research utility of MRI in these patients. The main risks in patients with DBS devices undergoing MRI are heating at the electrode tips, induced currents, implantable pulse generator dysfunction, and mechanical forces. Phantom model studies indicate that electrode tip heating remains the most serious risk for modern DBS devices. The absence of adverse events in patients imaged under DBS vendor guidelines for MRI demonstrates the general safety of MRI for patients with DBS devices. Moreover, recent work indicates that-given adequate safety data-patients may be imaged outside these guidelines. At present, investigators are primarily focused on improving DBS device and MRI safety through the development of tools, including safety simulation models. Existing guidelines provide a standardized framework for performing safe MRI in patients with DBS devices. It also highlights the possibility of expanding MRI as a tool for research and clinical care in these patients going forward.


Assuntos
Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda/instrumentação , Imageamento por Ressonância Magnética , Segurança do Paciente/normas , Simulação por Computador , Temperatura Alta/efeitos adversos , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/normas , Próteses Neurais/efeitos adversos , Imagens de Fantasmas
17.
IEEE Trans Biomed Eng ; 67(10): 2934-2944, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32078527

RESUMO

The efficacy of deep brain stimulation (DBS) depends on electrode placement accuracy, which can be jeopardized by brain shift due to burr hole and dura opening during surgery. Brain shift violates assumed rigid alignment between preoperative image and intraoperative anatomy, negatively impacting therapy. OBJECTIVE: This study presents a deformation-atlas biomechanical model-based approach to address shift. METHODS: Six patients, who underwent interventional magnetic resonance (iMR) image-guided DBS burr hole surgery, were studied. A patient-specific model was employed under varying surgical conditions, generating a collection of possible intraoperative shift estimations or a 'deformation atlas.' An inverse problem was driven by sparse measurements derived from iMR to determine an optimal fit of solutions of the atlas. This fit was then used to obtain a volumetric deformation field, which was utilized to update preoperative MR and estimate shift at surgical target region localized on iMR. Model performance was examined by quantitatively comparing intraoperative subsurface measurements to their model-predicted counterparts, and qualitatively comparing iMR, preoperative MR, and model updated MR. A nonrigid image registration was introduced as a comparator. RESULTS: Model-based approach reduced general parenchyma shift from 8.2 ± 2.2 to 2.7 ± 1.1 mm (∼66.8% correction), and produced updated MR with better agreement to iMR than that of preoperative MR. The average model estimated shift at target region was 1.2 mm. CONCLUSIONS: This study demonstrates the feasibility of a model-based shift correction strategy in DBS surgery with only sparse data. SIGNIFICANCE: The developed strategy has the potential to complement and/or enhance current clinical approaches in addressing shift.


Assuntos
Estimulação Encefálica Profunda , Imagem por Ressonância Magnética Intervencionista , Cirurgia Assistida por Computador , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Humanos , Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos
18.
IEEE Trans Biomed Eng ; 67(3): 876-882, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31247538

RESUMO

Interventional magnetic resonance imaging (MRI) could allow for diagnosis and immediate treatment of ischemic stroke; however, such endovascular catheter-based procedures under MRI guidance are inherently difficult. One major challenge is tracking the tip of the catheter, as standard fabrication methods for building inductively coupled coil markers are rigid and bulky. Here, we report a new approach that uses aerosol jet deposition to three-dimensional (3-D) print an inductively coupled RF coil marker on a polymer catheter. Our approach enables lightweight conforming markers on polymer catheters and these low-profile markers allow the catheter to be more safely navigated in small caliber vessels. Prototype markers with an inductor with the geometry of a double helix are incorporated on catheters for in vitro studies, and we show that these markers exhibit good signal amplification. We report temperature measurements and, finally, demonstrate feasibility in a preliminary in vivo experiment. We provide material properties and electromagnetic simulation performance analysis. This paper presents fully aerosol jet-deposited and functional wireless resonant markers on polymer catheters for use in 3T clinical scanners.


Assuntos
Catéteres , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imagem por Ressonância Magnética Intervencionista/métodos , Tecnologia sem Fio/instrumentação , Animais , Desenho de Equipamento , Feminino , Suínos , Temperatura
20.
Waste Manag ; 95: 182-191, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351603

RESUMO

This work aims to assess the environmental and economic sustainability of poultry litter gasification for heat and electricity generation. The results are compared with gasification of two other biomass feedstocks (Miscanthus and waste wood) and energy from fossil fuels. The findings suggest that poultry litter gasification can lead to significant reductions in 14 out of 16 impacts considered in the study in comparison with fossil-fuel alternatives. Compared to combined heat and power (CHP) from natural gas, most impacts from gasification of the litter are lower by more than 90%, including global warming potential. However, human toxicity and depletion of minerals are 25% and three times higher, respectively. Energy from poultry litter also has lower impacts than from waste woodchips and Miscanthus across all the categories, except for acidification. Owing to high capital costs, the unsubsidised cost of generating heat and electricity from poultry litter is similar to that of natural gas CHP but significantly cheaper than from other fossil-fuel alternatives. However, with the current subsidies in the UK, the payback time for poultry litter gasification is 13.5 years. It is estimated that 4.55 Mt of poultry litter is currently available in the UK, 2.73 Mt of which is suitable for conversion to energy. If this waste is utilised in gasification plants, it could potentially provide 0.6% of electricity and heat in the UK and save 1.7 Mt of GHG per year, equivalent to around 0.4% of UK's GHG emissions. However, the successful uptake of this technology will depend on a future reduction in capital costs.


Assuntos
Temperatura Alta , Aves Domésticas , Animais , Eletricidade , Combustíveis Fósseis , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...