Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38381316

RESUMO

This study focused on developing electrically stimulable hyaluronic acid (HA) films incorporating lipid nanoparticles (NPs) designed for the topical administration of lipophilic drugs and macromolecules. Based on beeswax and medium-chain triglycerides, NPs were successfully integrated into silk fibroin/chitosan films containing HA (NP-HA films) at a density of approximately 1011 NP/cm2, ensuring a uniform distribution. This integration resulted in a 40% increase in film roughness, a twofold decrease in Young's modulus, and enhanced film flexibility and bioadhesion work. The NP-HA films, featuring Ag/AgCl electrodes, demonstrated the capability to conduct a constant electrical current of 0.2 mA/cm2 without inducing toxicity in keratinocytes and fibroblasts during a 15-min application. Moreover, the NPs facilitated the homogeneous distribution of lipophilic drugs within the film, effectively transporting them to the skin and uniformly distributing them in the stratum corneum upon film administration. The sustained release of HA from the films, following Higuchi kinetics, did not alter the macroscopic characteristics of the film. Although anodic iontophoresis did not noticeably affect the release of HA, it did enhance its penetration into the skin. This enhancement facilitated the permeation of HA with a molecular weight (MW) of up to 2 × 105 through intercellular and transcellular routes. Confocal Raman spectroscopy provided evidence of an approximate 100% increase in the presence of HA with a MW in the range of 1.5-1.8 × 106 in the viable epidermis of human skin after only 15 min of iontophoresis applied to the films. Combining iontophoresis with NP-HA films exhibits substantial potential for noninvasive treatments focused on skin rejuvenation and wound healing.

2.
Pharmaceutics ; 13(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34575421

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease that is difficult to treat. Traditional cold cream, a water-in-oil emulsion made from beeswax, is used to alleviate AD symptoms in clinical practice, although its effectiveness has not been scientifically proven. The addition of propolis has the potential to impart anti-inflammatory properties to cold cream. However, in high concentrations, propolis can trigger allergic reactions. Thus, the objective of this work was to develop a cold cream formulation based on purified beeswax containing the same amount of green propolis present in raw beeswax. The impact of adding this low propolis concentration to cold cream on AD control was evaluated in patients compared to cold cream without added propolis (CBlank). Raw beeswax was chemically characterized to define the propolis concentration added to the propolis-loaded cold cream (CPropolis). The creams were characterized as to their physicochemical, mechanical, and rheological characteristics. The effect of CPropolis and CBlank on the quality of life, disease severity, and skin hydration of patients with AD was evaluated in a triple-blind randomized preclinical study. Concentrations of 34 to 120 ng/mL of green propolis extract reduced TNF-α levels in LPS-stimulated macrophage culture. The addition of propolis to cold cream did not change the cream's rheological, mechanical, or bioadhesive properties. The preclinical study suggested that both creams improved the patient's quality of life. Furthermore, the use of CPropolis decreased the disease severity compared to CBlank.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...