Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mammary Gland Biol Neoplasia ; 28(1): 19, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479911

RESUMO

The adaptor proteins NCK1 and NCK2 are well-established signalling nodes that regulate diverse biological processes including cell proliferation and actin dynamics in many tissue types. Here we have investigated the distribution and function of Nck1 and Nck2 in the developing mouse mammary gland. Using publicly available single-cell RNA sequencing data, we uncovered distinct expression profiles between the two paralogs. Nck1 showed widespread expression in luminal, basal, stromal and endothelial cells, while Nck2 was restricted to luminal and basal cells, with prominent enrichment in hormone-sensing luminal subtypes. Next, using mice with global knockout of Nck1 or Nck2, we assessed mammary gland development during and after puberty (5, 8 and 12 weeks of age). Mice lacking Nck1 or Nck2 displayed significant defects in ductal outgrowth and branching at 5 weeks compared to controls, and the defects persisted in Nck2 knockout mice at 8 weeks before normalizing at 12 weeks. These defects were accompanied by an increase in epithelial cell proliferation at 5 weeks and a decrease at 8 weeks in both Nck1 and Nck2 knockout mice. We also profiled expression of several key genes associated with mammary gland development at these timepoints and detected temporal changes in transcript levels of hormone receptors as well as effectors of cell proliferation and migration in Nck1 and Nck2 knockout mice, in line with the distinct phenotypes observed at 5 and 8 weeks. Together these studies reveal a requirement for NCK proteins in mammary gland morphogenesis, and suggest that deregulation of Nck expression could drive breast cancer progression and metastasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Glândulas Mamárias Animais , Animais , Camundongos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Células Epiteliais/citologia , Expressão Gênica
2.
Can J Kidney Health Dis ; 9: 20543581221121636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199279

RESUMO

Background: Kidney disease is a major public health issue arising from loss of glomerular podocyte function, and there are considerable sex differences in its prognosis. Evidence suggests a renoprotective effect of estrogen and soy diet-derived phytoestrogens, although the molecular basis for this is poorly understood. Objective: Here, we aim to assess sex differences in expression of key proteins associated with podocyte survival and determine the effects of dietary soy on glomerular and podocyte signaling. Methods: Male and female FVB mice were fed control, low (1%), and high (20%) doses of isolated soy protein (ISP) in utero and until 100 days of age. Spot urine was collected to measure proteinuria and isolated glomeruli were used to quantify activated and total levels of nephrin, Akt, and ERK1/2. To investigate protective effects of specific soy phytoestrogens, cultured podocytes were treated with or without daidzein and subject to control or high glucose as a model of podocyte injury. Results: Nephrin and Akt were elevated at baseline in glomeruli from females compared to males. Both sexes that were fed 1% and 20% ISP displayed robust increases in total glomerular Akt compared to controls, and these effects were more prominent in females. A similar trend at both doses in both sexes was observed with activated Akt and total nephrin. Notably, males exclusively showed increased phosphorylation of nephrin and extracellular signal-regulated kinase (ERK) at the 1% ISP dose; however, no overt changes in urinary albumin excretion or podocin levels were observed, suggesting that the soy diets did not impair podocyte function. Finally, in cultured male and female podocytes, daidzein treatment suppressed high glucose-induced ERK activation. Conclusions: Together, our findings reveal a putative mechanism to explain the protective influence of sex on kidney disease progression, and they provide further evidence to support a beneficial role for dietary soy in preserving glomerular function.


Contexte: L'insuffisance rénale est un problème majeur de santé publique résultant d'une perte de fonction des podocytes glomérulaires, et son pronostic diffère selon le sexe. Bien que le fondement moléculaire en soit mal compris, des données suggèrent que les œstrogènes et des phytoestrogènes dérivés du soja alimentaire auraient un effet néphroprotecteur. Objectifs: Évaluer les différences selon le sexe dans l'expression des protéines clés associées à la survie des podocytes, et déterminer les effets du soja alimentaire sur la signalisation glomérulaire et les podocytaire. Méthodologie: Des souris FVB mâles et femelles ont reçu un régime alimentaire témoin ou un regime à faible dose (1 %) ou à dose élevée (20 %) de protéines de soja isolées (PSI) in utero et jusqu'à l'âge de 100 jours. Des échantillons aléatoires d'urine ont été recueillis pour mesurer la protéinurie et des glomérules isolés ont été utilisés pour quantifier les niveaux activés et totaux de néphrine, d'Akt et d'ERK1/2. Pour évaluer l'effet protecteur de certains phytoestrogènes du soja, des podocytes cultivés ont été traités avec ou sans daidzéine et soumis à une dose témoin ou à une dose élevée de glucose comme modèle de lésion podocytaire. Résultats: Les taux initiaux de néphrine et d'Akt étaient plus élevés dans les glomérules des souris femelles. Les souris mâles et femelles nourries avec des doses de 1 % et de 20 % de PSI ont montré des augmentations significatives de l'Akt glomérulaire totale par rapport aux témoins, et ces effets étaient plus importants chez les femelles. Une tendance semblable a été observée chez les deux sexes et pour les deux doses en ce qui concerne l'Akt activée et la néphrine totale. Seuls les mâles ont montré une augmentation de la phosphorylation de la néphrine et de l'ERK à 1 % de PSI; aucun changement manifeste n'a cependant été observé dans l'excrétion urinaire d'albumine ou dans le taux de podocine, ce qui suggère que le soja alimentaire n'a pas altéré la fonction des podocytes. Dans les podocytes cultivés, tant mâles que femelles, le traitement à la daidzéine a inhibé l'activation de l'ERK induite par une forte dose de glucose. Conclusion: Ensemble, nos résultats révèlent un mécanisme putatif pouvant expliquer l'effet protecteur du sexe du patient sur la progression de l'insuffisance rénale. Ces résultats fournissent des preuves supplémentaires soutenant l'hypothèse d'un rôle bénéfique du soja alimentaire dans la préservation de la fonction glomérulaire.

3.
J Am Soc Nephrol ; 33(11): 1989-2007, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36316095

RESUMO

BACKGROUND: Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS: EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS: Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS: T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.


Assuntos
Miosina Tipo I , Síndrome Nefrótica , Animais , Humanos , Camundongos , Mutação , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Síndrome Nefrótica/genética , Esteroides
4.
J Am Soc Nephrol ; 33(8): 1546-1567, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35906089

RESUMO

BACKGROUND: Maintenance of the kidney filtration barrier requires coordinated interactions between podocytes and the underlying glomerular basement membrane (GBM). GBM ligands bind podocyte integrins, which triggers actin-based signaling events critical for adhesion. Nck1/2 adaptors have emerged as essential regulators of podocyte cytoskeletal dynamics. However, the precise signaling mechanisms mediated by Nck1/2 adaptors in podocytes remain to be fully elucidated. METHODS: We generated podocytes deficient in Nck1 and Nck2 and used transcriptomic approaches to profile expression differences. Proteomic techniques identified specific binding partners for Nck1 and Nck2 in podocytes. We used cultured podocytes and mice deficient in Nck1 and/or Nck2, along with podocyte injury models, to comprehensively verify our findings. RESULTS: Compound loss of Nck1/2 altered expression of genes involved in actin binding, cell adhesion, and extracellular matrix composition. Accordingly, Nck1/2-deficient podocytes showed defects in actin organization and cell adhesion in vitro, with podocyte detachment and altered GBM morphology present in vivo. We identified distinct interactomes for Nck1 and Nck2 and uncovered a mechanism by which Nck1 and Nck2 cooperate to regulate actin bundling at focal adhesions via α actinin-4. Furthermore, loss of Nck1 or Nck2 resulted in increased matrix deposition in vivo, with more prominent defects in Nck2-deficient mice, consistent with enhanced susceptibility to podocyte injury. CONCLUSION: These findings reveal distinct, yet complementary, roles for Nck proteins in regulating podocyte adhesion, controlling GBM composition, and sustaining filtration barrier integrity.


Assuntos
Podócitos , Actinina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Membrana Basal Glomerular/metabolismo , Camundongos , Proteínas Oncogênicas/metabolismo , Podócitos/metabolismo , Proteômica
5.
iScience ; 24(11): 103274, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34761192

RESUMO

Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.

6.
Am J Transl Res ; 13(8): 9874-9882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540124

RESUMO

BACKGROUND: ShcA (SHC1) is a phosphotyrosine adaptor protein which plays broad signaling roles within the cell. Systemic loss of ShcA during embryogenesis is lethal, while its aberrant expression contributes to disease. We recently demonstrated that ShcA is highly expressed during glomerular development and that it is upregulated within podocytes in experimental kidney injury and chronic kidney disease. The objective of this study was to analyze the in vivo role of ShcA in podocytes. METHODS: We selectively deleted all three isoforms of ShcA from mouse kidney podocytes using the Cre/lox system driven by the podocyte-specific podocin promoter (Nphs2). Immunostaining of kidney sections was used to confirm ShcA deletion in podocytes. Coomassie blue staining of protein gels was used to detect urinary albumin. Light and electron microscopy were used to assess glomerular morphology. Transcript levels of SHC1 in human renal disease were assessed using the Nephroseq database. RESULTS: Mice lacking podocyte ShcA were born at the expected Mendelian frequency and did not display overt renal impairment or changes in podocyte architecture beyond one year of age. In parallel, we correlated increased ShcA mRNA expression in the human kidney with proteinuria and reduced glomerular filtration rate. CONCLUSION: Our studies reveal that ShcA is dispensable for normal kidney function, but its upregulation is associated with disease.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34549195

RESUMO

The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.

8.
Can J Kidney Health Dis ; 7: 2054358120954024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117546

RESUMO

PURPOSE OF REVIEW: Uremic pruritus is a highly prevalent and debilitating symptom in patients with chronic kidney disease (CKD) and end-stage kidney disease (ESKD). The purpose of this review is to examine current evidence on the mechanisms and treatments of pruritus in CKD and highlight promising areas for future research. SOURCES OF INFORMATION: Published literature, including randomized controlled trials, cohort studies, case reports, and review articles, was searched for evidence pertaining to the pathophysiology and treatment of uremic pruritus. METHODS: A comprehensive narrative review was conducted to explore the molecular mechanisms underlying uremic pruritus, as well as the evidence (or lack thereof) supporting pharmacological and nonpharmacological treatments for uremic pruritus. The potential role of patient sex in the pathophysiology and management of uremic pruritus is also discussed. KEY FINDINGS: The pathophysiology of uremic pruritus involves a complex interplay of uremic toxins, systemic inflammation, mast cell activation, and imbalance of opioid receptors. Classic treatment strategies for uremic pruritus include optimization of dialysis parameters, amelioration of CKD-related mineral and bone disease, topical emollients and analgesics, antihistamines, the anticonvulsant medications gabapentin and pregabalin, and ultraviolet light B (UV-B) phototherapy. Strong data to support many of these classical treatments for uremic pruritus are limited. Newly evolving treatment approaches for uremic pruritus include opioid receptor modulators, neurokinin-1 inhibitors, and cannabinoids. Further studies regarding their efficacy, pharmacodynamics, and safety in the CKD and ESKD population are needed before these agents are accepted into widespread use. Additional nonpharmacological strategies aimed at treating uremic pruritus include psychotherapy, acupuncture, omega-3 fatty acids, and exercise. Finally, sex differences may exist regarding uremic pruritus, but studies directly addressing sex-specific mechanisms of uremic pruritus remain absent. LIMITATIONS: High-quality evidence in the management of uremic pruritus remains lacking. Most recommendations are based on expert opinion or studies involving small numbers of patients. In addition, our understanding of the pathophysiological mechanisms behind uremic pruritus is incomplete and continues to evolve over time. IMPLICATIONS: Uremic pruritus is a common symptom which reduces quality of life in CKD and ESKD. The identification of novel targeted treatment approaches may ease the burden of uremic pruritus in the future.


JUSTIFICATION: Le prurit urémique est un syndrome débilitant très prévalent chez les patients atteints d'insuffisance rénale chronique (IRC) et terminale (IRT). Cette revue examine les données probantes actuelles sur les mécanismes et le traitement de cette affection en contexte de néphropathie, et met en évidence les axes de recherche prometteurs. SOURCES: La littérature publiée, soit les essais contrôlés à répartition aléatoire, les études de cohorte, les rapports de cas et les articles de synthèse, a été consultée afin de répertorier les données probantes relatives à la physiopathologie et au traitement du prurit urémique. MÉTHODOLOGIE: Une revue narrative complète a été menée afin d'explorer les mécanismes moléculaires sous-tendant le prurit urémique et les données probantes (ou leur absence) appuyant ses traitements pharmacologiques et non pharmacologiques. Le rôle potentiellement joué par le sexe du patient dans la physiopathologie et la gestion de la maladie a également été discuté. PRINCIPAUX RÉSULTATS: La physiopathologie du prurit urémique implique l'interaction complexe des toxines urémiques, d'une inflammation systémique, de l'activation des mastocytes et d'un déséquilibre des récepteurs opioïdes. Les stratégies classiques de traitement comprennent l'optimisation des paramètres de dialyse, l'apaisement des troubles minéraux osseux liés à l'IRC, les émollients et analgésiques topiques, les antihistaminiques, les anticonvulsivants gabapentine et prégabaline et la photothérapie par UV-B. Les données robustes appuyant ces traitements classiques sont cependant limitées. Parmi les nouvelles approches de traitement, on compte les modulateurs de récepteurs opioïdes, les inhibiteurs de NK-1 et les cannabinoïdes. Des études supplémentaires se penchant sur leur efficacité, leur pharmacodynamie et leur innocuité chez les populations de patients atteints d'IRC et d'IRT sont toutefois nécessaires avant que ces agents ne soient approuvés pour un usage répandu. Les stratégies non pharmacologiques comptent la psychothérapie, l'acupuncture, la prise d'acides gras oméga 3 et l'exercice physique. Enfin, des différences liées au sexe du patient pourraient exister, mais les études portant directement sur les mécanismes sexospécifiques du prurit urémique manquent toujours. LIMITES: Les données probantes concernant la gestion du prurit urémique manquent toujours. La plupart des recommandations sont fondées sur l'avis d'experts ou sur des études portant sur de faibles échantillons. De plus, notre compréhension des mécanismes physiopathologiques causant le prurit urémique est incomplète et en constante évolution. CONCLUSION: Le prurit urémique est un symptôme courant chez les patients atteints d'IRC et d'IRT, dont il réduit la qualité de vie. L'identification de nouvelles approches de traitement ciblées pourrait alléger le fardeau associé au prurit urémique.

9.
J Cell Sci ; 133(4)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31974115

RESUMO

Assembly of signaling molecules into micrometer-sized clusters is driven by multivalent protein-protein interactions, such as those found within the nephrin-Nck (Nck1 or Nck2) complex. Phosphorylation on multiple tyrosine residues within the tail of the nephrin transmembrane receptor induces recruitment of the cytoplasmic adaptor protein Nck, which binds via its triple SH3 domains to various effectors, leading to actin assembly. The physiological consequences of nephrin clustering are not well understood. Here, we demonstrate that nephrin phosphorylation regulates the formation of membrane clusters in podocytes. We also reveal a connection between clustering and endocytosis, which appears to be driven by threshold levels of nephrin tyrosine phosphorylation and Nck SH3 domain signaling. Finally, we expose an in vivo correlation between transient changes in nephrin tyrosine phosphorylation, nephrin localization and integrity of the glomerular filtration barrier during podocyte injury. Altogether, our results suggest that nephrin phosphorylation determines the composition of effector proteins within clusters to dynamically regulate nephrin turnover and podocyte health.


Assuntos
Podócitos , Tirosina , Análise por Conglomerados , Endocitose , Proteínas de Membrana , Proteínas Oncogênicas/metabolismo , Fosforilação , Podócitos/metabolismo , Tirosina/metabolismo
10.
PLoS One ; 13(9): e0203905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212551

RESUMO

Mutations in the transmembrane protein nephrin (encoded by NPHS1) underlie nearly half of all cases of congenital nephrotic syndrome (CNS), which is caused by aberrations in the blood filtering function of glomerular podocytes. Nephrin directly contributes to the structure of the filtration barrier, and it also serves as a signaling scaffold in podocytes, undergoing tyrosine phosphorylation on its cytoplasmic tail to recruit intracellular effector proteins. Nephrin phosphorylation is lost in several human and experimental models of glomerular disease, and genetic studies have confirmed its importance in maintenance of the filtration barrier. To date, however, the effect of CNS-associated NPHS1 variants on nephrin phosphorylation remains to be determined, which hampers genotype-phenotype correlations. Here, we have characterized a novel nephrin sequence variant, A419T, which is expressed along with C623F in a patient presenting with CNS. Nephrin localization is altered in kidney biopsies, and we further demonstrate reduced surface expression and ER retention of A419T and C623F in cultured cells. Moreover, we show that both mutations impair nephrin tyrosine phosphorylation, and they exert dominant negative effects on wildtype nephrin signaling. Our findings thus reveal that missense mutations in the nephrin extracellular region can impact nephrin signaling, and they uncover a potential pathomechanism to explain the spectrum of clinical severity seen with mild NPHS1 mutations.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Síndrome Nefrótica/congênito , Síndrome Nefrótica/genética , Adolescente , Substituição de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Rim/patologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/química , Microscopia Confocal , Proteínas Mutantes/química , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Linhagem , Fosforilação , Podócitos/metabolismo , Podócitos/patologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
11.
Artigo em Inglês | MEDLINE | ID: mdl-29922234

RESUMO

Podocytes are a major component of the glomerular blood filtration barrier, and alterations to the morphology of their unique actin-based foot processes (FP) are a common feature of kidney disease. Adjacent FP are connected by a specialized intercellular junction known as the slit diaphragm (SD), which serves as the ultimate barrier to regulate passage of macromolecules from the blood. While the link between SD dysfunction and reduced filtration selectivity has been recognized for nearly 50 years, our understanding of the underlying molecular circuitry began only 20 years ago, sparked by the identification of NPHS1, encoding the transmembrane protein nephrin. Nephrin not only functions as the core component of the extracellular SD filtration network but also as a signaling scaffold via interactions at its short intracellular region. Phospho-regulation of several conserved tyrosine residues in this region influences signal transduction pathways which control podocyte cell adhesion, shape, and survival, and emerging studies highlight roles for nephrin phospho-dynamics in mechanotransduction and endocytosis. The following review aims to summarize the last 5 years of advancement in our knowledge of how signaling centered at nephrin directs SD barrier formation and function. We further provide insight on promising frontiers in podocyte biology, which have implications for SD signaling in the healthy and diseased kidney.

12.
J Am Soc Nephrol ; 29(1): 92-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29018139

RESUMO

Nephrin is a key structural component of the podocyte slit diaphragm, and proper expression of nephrin on the cell surface is critical to ensure integrity of the blood filtration barrier. Maintenance of nephrin within this unique cell junction has been proposed to require dynamic phosphorylation events and endocytic recycling, although the molecular mechanisms that control this interplay are poorly understood. Here, we investigated the possibility that the phosphotyrosine adaptor protein ShcA regulates nephrin turnover. Western blotting and immunostaining analysis confirmed that ShcA is expressed in podocytes. In immunoprecipitation and pulldown assays, ShcA, via its SH2 domain, was associated with several phosphorylated tyrosine residues on nephrin. Overexpression of ShcA promoted nephrin tyrosine phosphorylation and reduced nephrin signaling and cell surface expression in vitro In a rat model of reversible podocyte injury and proteinuria, phosphorylated nephrin temporally colocalized with endocytic structures coincident with upregulation of ShcA expression. In vivo biotinylation assays confirmed that nephrin expression decreased at the cell surface and correspondingly increased in the cytosol during the injury time course. Finally, immunostaining in kidney biopsy specimens demonstrated overexpression of ShcA in several human proteinuric kidney diseases compared with normal conditions. Our results suggest that increases in ShcA perturb nephrin phosphosignaling dynamics, leading to aberrant nephrin turnover and slit diaphragm disassembly.


Assuntos
Endocitose , Nefropatias/metabolismo , Proteínas de Membrana/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Biotinilação , Membrana Celular/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Nefropatias/patologia , Masculino , Nefrose/induzido quimicamente , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Tirosina/metabolismo , Regulação para Cima
13.
J Biol Chem ; 291(24): 12799-12808, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27033705

RESUMO

Podocytes are key components of the kidney blood filtration barrier, and their ability to withstand hemodynamic strain is proposed to be closely tied to their unique and flexible cytoarchitecture. However, the mechanisms that control such mechanotransduction are poorly understood. We have previously established that tyrosine phosphorylation of the transmembrane protein nephrin promotes recruitment of the Nck1/2 cytoskeletal adaptor proteins and downstream actin remodeling. We now reveal that Nck integrates nephrin with the Hippo kinase cascade through association with the adaptor protein WTIP. Using mutational analysis, we show that Nck sequesters WTIP and its binding partner Lats1 to phosphorylated nephrin, resulting in decreased phospho-activation of Lats1. We further demonstrate that, coincident with nephrin dephosphorylation in a transient model of podocyte injury in mice, Lats1 is rapidly activated, and this precedes significant down-regulation of the transcription regulator Yap. Moreover, we show reduced levels of Yap protein in mice with chronic disruption of nephrin phospho-signaling. Together, these findings support the existence of a dynamic molecular link between nephrin signaling and the canonical Hippo pathway in podocytes, which may facilitate the conversion of mechanical cues to biochemical signals promoting podocyte viability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Proteínas Correpressoras , Proteínas do Citoesqueleto , Feminino , Técnicas de Introdução de Genes , Células HEK293 , Via de Sinalização Hippo , Humanos , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Fosforilação , Podócitos/metabolismo
14.
J Am Soc Nephrol ; 27(8): 2422-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26802179

RESUMO

Podocytes are specialized epithelial cells of the kidney blood filtration barrier that contribute to permselectivity via a series of interdigitating actin-rich foot processes. Positioned between adjacent projections is a unique cell junction known as the slit diaphragm, which is physically connected to the actin cytoskeleton via the transmembrane protein nephrin. Evidence indicates that tyrosine phosphorylation of the intracellular tail of nephrin initiates signaling events, including recruitment of cytoplasmic adaptor proteins Nck1 and Nck2 that regulate actin cytoskeletal dynamics. Nephrin tyrosine phosphorylation is altered in human and experimental renal diseases characterized by pathologic foot process remodeling, prompting the hypothesis that phosphonephrin signaling directly influences podocyte morphology. To explore this possibility, we generated and analyzed knockin mice with mutations that disrupt nephrin tyrosine phosphorylation and Nck1/2 binding (nephrin(Y3F/Y3F) mice). Homozygous nephrin(Y3F/Y3F) mice developed progressive proteinuria accompanied by structural changes in the filtration barrier, including podocyte foot process effacement, irregular thickening of the glomerular basement membrane, and dilated capillary loops, with a similar but later onset phenotype in heterozygous animals. Furthermore, compared with wild-type mice, nephrin(Y3F/Y3F) mice displayed delayed recovery in podocyte injury models. Profiling of nephrin tyrosine phosphorylation dynamics in wild-type mice subjected to podocyte injury indicated site-specific differences in phosphorylation at baseline, injury, and recovery, which correlated with loss of nephrin-Nck1/2 association during foot process effacement. Our results define an essential requirement for nephrin tyrosine phosphorylation in stabilizing podocyte morphology and suggest a model in which dynamic changes in phosphotyrosine-based signaling confer plasticity to the podocyte actin cytoskeleton.


Assuntos
Podócitos/fisiologia , Podócitos/ultraestrutura , Tirosina/metabolismo , Animais , Feminino , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais
15.
Mol Cell Biol ; 35(9): 1573-87, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691664

RESUMO

Development of the cardiovascular system is critically dependent on the ability of endothelial cells (ECs) to reorganize their intracellular actin architecture to facilitate migration, adhesion, and morphogenesis. Nck family cytoskeletal adaptors function as key mediators of actin dynamics in numerous cell types, though their role in EC biology remains largely unexplored. Here, we demonstrate an essential requirement for Nck within ECs. Mouse embryos lacking endothelial Nck1/2 expression develop extensive angiogenic defects that result in lethality at about embryonic day 10. Mutant embryos show immature vascular networks, with decreased vessel branching, aberrant perivascular cell recruitment, and reduced cardiac trabeculation. Strikingly, embryos deficient in endothelial Nck also fail to undergo the endothelial-to-mesenchymal transition (EnMT) required for cardiac valve morphogenesis, with loss of Nck disrupting expression of major EnMT markers, as well as suppressing mesenchymal outgrowth. Furthermore, we show that Nck-null ECs are unable to migrate downstream of vascular endothelial growth factor and angiopoietin-1, and they exhibit profound perturbations in cytoskeletal patterning, with disorganized cellular projections, impaired focal adhesion turnover, and disrupted actin-based signaling. Our collective findings thereby reveal a crucial role for Nck as a master regulator within the endothelium to control actin cytoskeleton organization, vascular network remodeling, and EnMT during cardiovascular development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Anormalidades Cardiovasculares/embriologia , Sistema Cardiovascular/embriologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Proteínas Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anormalidades Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Movimento Celular , Células Endoteliais/citologia , Deleção de Genes , Camundongos , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo
16.
Curr Opin Nephrol Hypertens ; 23(4): 420-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24867674

RESUMO

PURPOSE OF REVIEW: The podocyte slit diaphragm is a fundamental component of the glomerular filtration barrier and its function is highly dependent on the maintenance of specialized actin-based projections known as foot processes. In this review, we update the function of key slit diaphragm-associated proteins, and introduce some new players and emerging avenues of research within podocyte biology. RECENT FINDINGS: Studies using rodent models continue to support the long-held belief that precise regulation of actin dynamics at the slit diaphragm is essential for proper foot process organization. However, it is also becoming increasingly clear that alterations in actin remodeling can significantly contribute to damage in both animal models and human disease. In particular, the importance of signaling via the Rho family of GTPases has been recognized, as well as the requirement for proper localization and turnover of the slit diaphragm. SUMMARY: Regulation of the connection between the slit diaphragm and the podocyte actin network requires complex interplay between multiple signaling pathways. New discoveries contribute to an ever-expanding view of the slit diaphragm and serve to create a framework for the development of new therapeutic strategies targeting podocyte function in the future.


Assuntos
Actinas/metabolismo , Junções Intercelulares/fisiologia , Glomérulos Renais/fisiologia , Proteínas de Membrana/metabolismo , Podócitos/metabolismo , Transdução de Sinais/fisiologia , Animais , Endocitose , Humanos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...