Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 25(6): 3905-3918, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33415377

RESUMO

OBJECTIVE: To evaluate the hard tissue volumetric and soft tissue contour linear changes in implants with two different implant surface characteristics after a ligature-induced peri-implantitis. MATERIAL AND METHODS: In eight beagle dogs, implants with the same size and diameter but distinct surface characteristics were placed in the healed mandibular sites. Test implants had an external monolayer of multi-phosphonate molecules (B+), while control implants were identical but without the phosphonate-rich surface. Once the implants were osseointegrated, oral hygiene was interrupted and peri-implantitis was induced by placing subgingival ligatures. After 16 weeks, the ligatures were removed and peri-implantitis progressed spontaneously. Bone to implant contact (BIC) and bone loss (BL) were assessed three-dimensionally with Micro-Ct (µCT). Dental casts were optically scanned and the obtained digitalized standard tessellation language (STL) images were used to assess the soft tissue vertical and horizontal contour linear changes. RESULTS: Reduction of the three-dimensional BIC percentage during the induction and progression phases of the experimental peri-implantitis was similar for both the experimental and control implants, without statistically significant differences between them. Soft tissue analysis revealed for both implant groups an increase in horizontal dimension after the induction of peri-implantitis, followed by a decrease after the spontaneous progression period. In the vertical dimension, a soft tissue dehiscence was observed in both groups, being more pronounced at the buccal aspect. CONCLUSIONS: The added phosphonate-rich surface did not provide a more resistant environment against experimental peri-implantitis, when assessed by the changes in bone volume and soft tissue contours. CLINICAL RELEVANCE: Ligature-induced peri-implantitis is a validated model to study the tissue changes occurring during peri-implantitis. It was hypothesized that a stronger osseointegration mediated by the chemical bond of a phosphonate-rich implant surface would develop an environment more resistant to the inflammatory changes occurring after experimental peri-implantitis. These results, however, indicate that the hard and soft tissue destructive changes occurring at both the induction and progression phases of experimental peri-implantitis were not influenced by the quality of osseointegration.


Assuntos
Perda do Osso Alveolar , Implantes Dentários , Peri-Implantite , Animais , Cães , Mandíbula , Osseointegração
2.
Int J Oral Maxillofac Surg ; 43(1): 75-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23810680

RESUMO

Expanded polytetrafluoroethylene (e-PTFE) has been used successfully as a membrane barrier for regeneration procedures. However, when exposed to the oral cavity, its high porosity increases the risk of early infection, which can affect surgical outcomes. An alternative to e-PTFE is non-expanded and dense polytetrafluoroethylene (n-PFTE), which results in lower levels of early infection following surgical procedures. The aim of this literature review was to analyze and describe the available literature on n-PFTE, report the indications for use, advantages, disadvantages, surgical protocols, and complications. The medical databases Medline-PubMed and Cochrane Library were searched and supplemented with a hand search for reports published between 1980 and May 2012 on n-PTFE membranes. The search strategy was limited to animal, human, and in vitro studies in dental journals published in English. Twenty-four articles that analyzed the use of n-PTFE as a barrier membrane for guided tissue regeneration and guided bone regeneration around teeth and implants were identified: two in vitro studies, seven experimental studies, and 15 clinical studies. There is limited clinical and histological evidence for the use of n-PTFE membranes at present, with some indications in guided tissue regeneration and guided bone regeneration in immediate implants and fresh extraction sockets.


Assuntos
Regeneração Tecidual Guiada Periodontal , Politetrafluoretileno/química , Animais , Humanos , Membranas Artificiais , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...