Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(98): eadk9550, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213338

RESUMO

Eliciting potent and broadly neutralizing antibodies (bnAbs) is a major goal in HIV-1 vaccine development. Here, we describe how germline-targeting immunogen BG505 SOSIP germline trimer 1.1 (GT1.1), generated through structure-based design, engages a diverse range of VRC01-class bnAb precursors. A single immunization with GT1.1 expands CD4 binding site (CD4bs)-specific VRC01-class B cells in knock-in mice and drives VRC01-class maturation. In nonhuman primates (NHPs), GT1.1 primes CD4bs-specific neutralizing serum responses. Selected monoclonal antibodies (mAbs) isolated from GT1.1-immunized NHPs neutralize fully glycosylated BG505 virus. Two mAbs, 12C11 and 21N13, neutralize subsets of diverse heterologous neutralization-resistant viruses. High-resolution structures revealed that 21N13 targets the same conserved residues in the CD4bs as VRC01-class and CH235-class bnAbs despite its low sequence similarity (~40%), whereas mAb 12C11 binds predominantly through its heavy chain complementarity-determining region 3. These preclinical data underpin the ongoing evaluation of GT1.1 in a phase 1 clinical trial in healthy volunteers.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Antígenos CD4 , Anticorpos Anti-HIV , HIV-1 , Animais , Vacinas contra a AIDS/imunologia , Camundongos , Humanos , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Antígenos CD4/imunologia , Sítios de Ligação/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Vacinação , Anticorpos Monoclonais/imunologia , Feminino
2.
Nat Commun ; 13(1): 4539, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927266

RESUMO

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Epitopos , Humanos , Isotipos de Imunoglobulinas , Receptores de Antígenos de Linfócitos B , Glicoproteína da Espícula de Coronavírus
3.
medRxiv ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100023

RESUMO

Emerging SARS-CoV-2 variants pose a threat to human immunity induced by natural infection and vaccination. We assessed the recognition of three variants of concern (B.1.1.7, B.1.351 and P.1) in cohorts of COVID-19 patients ranging in disease severity (n = 69) and recipients of the Pfizer/BioNTech vaccine (n = 50). Spike binding and neutralization against all three VOC was substantially reduced in the majority of samples, with the largest 4-7-fold reduction in neutralization being observed against B.1.351. While hospitalized COVID-19 patients and vaccinees maintained sufficient neutralizing titers against all three VOC, 39% of non-hospitalized patients did not neutralize B.1.351. Moreover, monoclonal neutralizing antibodies (NAbs) show sharp reductions in their binding kinetics and neutralizing potential to B.1.351 and P.1, but not to B.1.1.7. These data have implications for the degree to which pre-existing immunity can protect against subsequent infection with VOC and informs policy makers of susceptibility to globally circulating SARS-CoV-2 VOC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA