Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(33): 6945-6952, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37578026

RESUMO

The thermal stability of cross-links between polycyclic aromatic hydrocarbons (PAHs) is critical for understanding the formation of soot pollutants, graphite, and carbon blacks. Recently, a variety of different π-radicals have been directly imaged and suggested to enable thermally stable bonding; however, a systematic study of reactivity has been lacking. In this work, we use density functional theory to study the reactivity of PAH π-radicals. The Mulliken spin densities are initially used to categorize the different classes of localization, and the bond energy is computed to determine the degree of localization required for thermal stability. The results showed that the bond energies of PAHs are strongly correlated with the calculated spin densities, but bond energies do not exist with the bond lengths due to significant rearrangement and steric effects during bond formation. A threshold for π-radical localization is suggested that will be stable in combustion and pyrolysis environments of ρMα ≥ 0.5. Finally, the formation of multicenter bonds between localized and delocalized π-radicals was investigated using the nudge elastic band (NEB) scan, and it was found that only delocalized π-radicals provided local energy minima. These results show that the localization of π-radicals is critical for the formation of thermally stable single-center bonds between aromatic radicals.

2.
ACS Nano ; 17(14): 13563-13574, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436943

RESUMO

Incipient soot early in the flame was studied by high-resolution atomic force microscopy and scanning tunneling microscopy to resolve the atomic structure and orbital densities of single soot molecules prepared on bilayer NaCl on Cu(111). We resolved extended catacondensed and pentagonal-ring linked (pentalinked) species indicating how small aromatics cross-link and cyclodehydrogenate to form moderately sized aromatics. In addition, we resolved embedded pentagonal and heptagonal rings in flame aromatics. These nonhexagonal rings suggest simultaneous growth through aromatic cross-linking/cyclodehydrogenation and hydrogen abstraction acetylene addition. Moreover, we observed three classes of open-shell π-radical species. First, radicals with an unpaired π-electron delocalized along the molecule's perimeter. Second, molecules with partially localized π-electrons at zigzag edges of a π-radical. Third, molecules with strong localization of a π-electron at pentagonal- and methylene-type sites. The third class consists of π-radicals localized enough to enable thermally stable bonds, as well as multiradical species such as diradicals in the open-shell triplet state. These π-diradicals can rapidly cluster through barrierless chain reactions enhanced by van der Waals interactions. These results improve our understanding of soot formation and the products formed by combustion and could provide insights for cleaner combustion and the production of hydrogen without CO2 emissions.

3.
J Am Chem Soc ; 143(31): 12212-12219, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338507

RESUMO

Soot emitted from incomplete combustion of hydrocarbon fuels contributes to global warming and causes human disease. The mechanism by which soot nanoparticles form within hydrocarbon flames is still an unsolved problem in combustion science. Mechanisms proposed to date involving purely chemical growth are limited by slow reaction rates, whereas mechanisms relying on solely physical interactions between molecules are limited by weak intermolecular interactions that are unstable at flame temperatures. Here, we show evidence for a reactive π-diradical aromatic soot precursor imaged using non-contact atomic force microscopy. Localization of π-electrons on non-hexagonal rings was found to allow for Kekulé aromatic soot precursors to possess a triplet diradical ground state. Barrierless chain reactions are shown between these reactive sites, which provide thermally stable aromatic rim-linked hydrocarbons under flame conditions. Quantum molecular dynamics simulations demonstrate physical condensation of aromatics that survive for tens of picoseconds. Bound internal rotors then enable the reactive sites to find each other and become chemically cross-linked before dissociation. These species provide a rapid, thermally stable chain reaction toward soot nanoparticle formation and could provide molecular targets for limiting the emission of these toxic combustion products.

4.
J Phys Chem A ; 124(48): 10040-10052, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33202128

RESUMO

The thermodynamics and kinetics of cross-linking reactions between PAHs of various reactive edge types that are observed in soot precursors are explored using density functional theory. The forward rate constants confirm that reactions involving aryl σ-radicals are faster than others, but rate constants for reactions between aryl σ-radicals and localized π-radicals can be as large or even larger than for two aryl σ-radicals. However, rates for all cross-linking reactions between small PAHs are likely too slow to explain soot formation. The equilibrium constants show that reactions involving σ and π-radical PAHs are the most favorable at flame temperatures. Equilibrium constants for larger PAHs show that the ability to form bonded-and-stacked structures results in enhanced equilibrium constants for the reaction of two large localized π-radicals compared to those for other edge types. This suggests that combined physical and chemical interactions between larger π-radical PAHs could be important in flame environments.

5.
Phys Rev Lett ; 123(11): 116105, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573266

RESUMO

Disordered carbons comprise graphene fragments assembled into three-dimensional networks. It has long been debated whether these networks contain positive curvature, as seen in fullerenes, negative curvature, as proposed for the schwarzite structures, or zero curvature, as in ribbons. We present a mesh-based approach to analyze the topology of a set of nanoporous and glassy carbon models that accurately reproduce experimental properties. Although all three topological elements are present, negatively curved structures dominate. At the atomic level, analysis of local environments shows that sp- and sp^{3}-bonded atoms are associated with line defects and screw dislocations that resolve topological complexities such as termination of free edges and stacking of low curvature regions into ribbons. These results provide insight into the synthesis of porous carbon materials, glassy carbon and the graphitizability of carbon materials.

6.
J Phys Chem A ; 123(33): 7303-7313, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31339720

RESUMO

We introduce a simple global optimization approach that is able to find minimum energy configurations of clusters containing aromatic molecules. The translational and rotational perturbations required in Monte Carlo-based methods often lead to unrealistic configurations within which two or more molecular rings intersect, causing many of the computational steps to be rejected and the optimization process to be inefficient. Here we develop a modification of the basin-hopping global optimization procedure tailored to tackle problems with intersecting molecular rings. Termed the Sphere Encapsulated Monte Carlo (SEMC) method, this method introduces sphere-based rearrangement and minimization steps at each iteration, and its performance is shown through the exploration of potential energy landscapes of polycyclic aromatic hydrocarbon (PAH) clusters, systems of interest in combustion and astrophysics research. The SEMC method provides clusters that are accurate to 5% mean difference of the minimum energy at a 10-fold speed up compared to previous work using advanced molecular dynamics simulations. Importantly, the SEMC method captures key structural characteristics and molecular size partitioning trends as measured by the molecular radial distances and coordination numbers. The advantages of the SEMC method are further highlighted in its application to previously unstudied heterogeneous PAH clusters.

7.
Phys Chem Chem Phys ; 21(29): 16240-16251, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298672

RESUMO

In this work, the optical band gaps of polycyclic aromatic hydrocarbons (PAHs) crosslinked via an aliphatic bond, curved via pentagon integration and with radical character were computed using density functional theory. A variety of different functionals were benchmarked against optical band gaps (OBGs) measured by ultraviolet-visible spectroscopy with HSE06 being most accurate with a percentage error of 6% for a moderate basis set. Pericondensed aromatics with different symmetries were calculated with this improved functional providing new scaling relationships for the OBG versus size. Further calculations showed crosslinks cause a small decrease in the OBG of the monomers which saturates after 3-4 crosslinks. Curvature in PAHs was shown to increase the optical band gap due to the resulting change in hybridisation of the system, but this increase saturated at larger sizes. The increase in OBG between a flat PAH and a strained curved one was shown to be equivalent to a difference of several rings in size for pericondensed aromatic systems. The effect of σ-radicals on the optical band gap was also shown to be negligible, however, π-radicals were found to decrease the band gap by ∼0.5 eV. These findings have applications in understanding the molecular species involved in soot formation.

8.
Environ Sci Technol ; 53(7): 3538-3546, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30865828

RESUMO

In this work, we investigate the molecular composition and nanostructure of gasification charcoal (biochar) by comparing it with heat-treated fullerene arc-soot. Using ultrahigh resolution Fourier transform ion-cyclotron resonance and laser desorption ionization time-of-flight mass spectrometry, Raman spectroscopy, and high resolution transmission electron microscopy we analyzed charcoal of low tar content obtained from gasification. Mass spectrometry revealed no magic number fullerenes such as C60 or C70 in the charcoal. The positive molecular ion m/ z 701, previously considered a graphitic part of the nanostructure, was found to be a breakdown product of pyrolysis and not part of the nanostructure. A higher mass distribution of ions similar to that found in thermally treated fullerene soot indicates that they share a nanostructure. Recent insights into the formation of all carbon fullerenes reveal that conditions in charcoal formation are not optimal for the formation of fullerenes, but instead, curved carbon structures coalesce into fulleroid-like structures. Microscopy and spectroscopy support such a stacked, fulleroid-like nanostructure, which was explored using reactive molecular dynamics simulations.


Assuntos
Carvão Vegetal , Fulerenos , Carbono , Espectrometria de Massas
9.
Anal Bioanal Chem ; 408(16): 4403-11, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27086022

RESUMO

Nanostructured gold substrates provide chemically stable, signal-enhancing substrates for the sensitive detection of a variety of compounds through surface-enhanced Raman spectroscopy (SERS). Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures that provide reproducible quantitative analysis, historically a weakness of the SERS technique. Here, we describe the novel use of gold-sputtered Blu-ray disc surfaces as SERS substrates. The unique surface features and composition of the Blu-ray disc recording surface lead to the formation of gold nano-islands and nanogaps following simple gold sputtering, without any background peaks from the substrate. The SERS performance of this substrate is strong and reproducible with an enhancement factor (EF) of 10(3) for melamine. A limit of detection (LOD) for this compound of 70 ppb and average reproducibility of ±12 % were achieved. Gold-sputtered Blu-ray discs thus offer an excellent alternative to more exotic gold SERS substrates prepared by advanced, time-consuming and expensive methods. Graphical abstract AFM 3D images of 1-µm(2) sections of uncoated and gold-sputtered recordable Blu-ray disc (BD-R) surfaces and the SERS signal obtained on the gold-sputtered surface for a 1000 ppm aqueous solution of melamine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...