Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 48(40): 4863-5, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22497007

RESUMO

Cooperative binary ionic (CBI) solids comprise a versatile new class of opto-electronic and catalytic materials consisting of ionically self-assembled pairs of organic anions and cations. Herein, we report CBI nanocomposites formed by growing nanoparticles of one type of porphyrin CBI solid onto a second porphyrin CBI substructure with complementary functionality.


Assuntos
Nanopartículas/química , Porfirinas/química , Cobalto/química , Íons/química , Nanopartículas/ultraestrutura , Estanho/química , Zinco/química
2.
Nanoscale ; 4(5): 1695-700, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22310932

RESUMO

Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(II) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(IV) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS(4-) (an electron donor) and three half molecules of dihydroxy-SnTNMePyP(4+) (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped π-π stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended π-π stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers.

3.
Chem Commun (Camb) ; 47(21): 6069-71, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21523310

RESUMO

Varying the solution growth conditions of cooperative binary ionic solids composed of anionic and cationic metalloporphyrins produces a series of families of self-assembled structures that efficiently and durably photosensitize the evolution of hydrogen.

4.
J Am Chem Soc ; 132(23): 8194-201, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20469866

RESUMO

Microscale four-leaf clover-shaped structures are formed by self-assembly of anionic and cationic porphyrins. Depending on the metal complexed in the porphyrin macrocycle (Zn or Sn), the porphyrin cores are either electron donors or electron acceptors. All four combinations of these two metals in cationic tetra(N-ethanol-4-pyridinium)porphyrin and anionic tetra(sulfonatophenyl)porphyrin result in related cloverlike structures with similar crystalline packing indicated by X-ray diffraction patterns. The clover morphology transforms as the ionic strength and temperature of the self-assembly reaction are increased, but the structures maintain 4-fold symmetry. The ability to alter the electronic and photophysical properties of these solids (e.g., by altering the metals in the porphyrins) and to vary cooperative interactions between the porphyrin subunits raises the possibility of producing binary solids with tunable functionality. For example, we show that the clovers derived from anionic Zn porphyrins (electron donors) and cationic Sn porphyrins (electron acceptors) are photoconductors, but when the metals are reversed in the two porphyrins, the resulting clovers are insulators.


Assuntos
Porfirinas/química , Eletrônica , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Fenômenos Ópticos , Espectrofotometria Ultravioleta , Estanho/química , Difração de Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...