Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Front Cell Neurosci ; 18: 1353542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469354

RESUMO

Introduction: Loss of proteasome function, proteinopathy, and proteotoxicity may cause neurodegeneration across the human lifespan in several forms of brain injury and disease. Drugs that activate brain proteasomes in vivo could thus have a broad therapeutic impact in neurology. Methods: Using pigs, a clinically relevant large animal with a functionally compartmental gyrencephalic cerebral cortex, we evaluated the localization and biochemical activity of brain proteasomes and tested the ability of small molecules to activate brain proteasomes. Results: By Western blotting, proteasome protein subunit PSMB5 and PSMA3 levels were similar in different pig brain regions. Immunohistochemistry for PSMB5 showed localization in the cytoplasm (diffuse and particulate) and nucleus (cytoplasm < nucleus). Some PSMB5 immunoreactivity was colocalized with mitochondrial (voltage-gated anion channel and cyclophilin D) and cell death (Aven) proteins in the neuronal soma and neuropil in the neocortex of pig and human brains. In the nucleus, PSMB5 immunoreactivity was diffuse, particulate, and clustered, including perinucleolar decorations. By fluorogenic assay, proteasome chymotrypsin-like activities (CTL) in crude tissue soluble fractions were generally similar within eight different pig brain regions. Proteasome CTL activity in the hippocampus was correlated with activity in nasal mucosa biopsies. In pilot analyses of subcellular fractions of pig cerebral cortex, proteasome CTL activity was highest in the cytosol and then ~50% lower in nuclear fractions; ~15-20% of total CTL activity was in pure mitochondrial fractions. With in-gel activity assay, 26S-singly and -doubly capped proteasomes were the dominant forms in the pig cerebral cortex. With a novel in situ histochemical activity assay, MG132-inhibitable proteasome CTL activity was localized to the neuropil, as a mosaic, and to cell bodies, nuclei, and centrosome-like perinuclear satellites. In piglets treated intravenously with pyrazolone derivative and chlorpromazine over 24 h, brain proteasome CTL activity was modestly increased. Discussion: This study shows that the proteasome in the pig brain has relative regional uniformity, prominent nuclear and perinuclear presence with catalytic activity, a mitochondrial association with activity, 26S-single cap dominance, and indications from small molecule systemic administration of pyrazolone derivative and chlorpromazine that brain proteasome function appears safely activable.

2.
Cells ; 12(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37887298

RESUMO

The effects of hypothermia on neonatal encephalopathy may vary topographically and cytopathologically in the neocortex with manifestations potentially influenced by seizures that alter the severity, distribution, and type of neuropathology. We developed a neonatal piglet survival model of hypoxic-ischemic (HI) encephalopathy and hypothermia (HT) with continuous electroencephalography (cEEG) for seizures. Neonatal male piglets received HI-normothermia (NT), HI-HT, sham-NT, or sham-HT treatments. Randomized unmedicated sham and HI piglets underwent cEEG during recovery. Survival was 2-7 days. Normal and pathological neurons were counted in different neocortical areas, identified by cytoarchitecture and connectomics, using hematoxylin and eosin staining and immunohistochemistry for RNA-binding FOX-1 homolog 3 (Rbfox3/NeuN). Seizure burden was determined. HI-NT piglets had a reduced normal/total neuron ratio and increased ischemic-necrotic/total neuron ratio relative to sham-NT and sham-HT piglets with differing severities in the anterior and posterior motor, somatosensory, and frontal cortices. Neocortical neuropathology was attenuated by HT. HT protection was prominent in layer III of the inferior parietal cortex. Rbfox3 immunoreactivity distinguished cortical neurons as: Rbfox3-positive/normal, Rbfox3-positive/ischemic-necrotic, and Rbfox3-depleted. HI piglets had an increased Rbfox3-depleted/total neuron ratio in layers II and III compared to sham-NT piglets. Neuronal Rbfox3 depletion was partly rescued by HT. Seizure burdens in HI-NT and HI-HT piglets were similar. We conclude that the neonatal HI piglet neocortex has: (1) suprasylvian vulnerability to HI and seizures; (2) a limited neuronal cytopathological repertoire in functionally different regions that engages protective mechanisms with HT; (3) higher seizure burden, insensitive to HT, that is correlated with more panlaminar ischemic-necrotic neurons in the somatosensory cortex; and (4) pathological RNA splicing protein nuclear depletion that is sensitive to HT. This work demonstrates that HT protection of the neocortex in neonatal HI is topographic and laminar, seizure unmitigating, and restores neuronal depletion of RNA splicing factor.


Assuntos
Hipotermia , Hipóxia-Isquemia Encefálica , Neocórtex , Animais , Masculino , Suínos , Hipotermia/patologia , Animais Recém-Nascidos , Neocórtex/metabolismo , Hipóxia/patologia , Neurônios/metabolismo , Isquemia/patologia , Hipóxia-Isquemia Encefálica/patologia , Convulsões
3.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609182

RESUMO

Non-invasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent developments in diffusion MRI have produced new tools for examining tissue microstructure at a level well below the imaging resolution. Here, we report the use of diffusion time ( t )-dependent diffusion kurtosis imaging ( t DKI) to simultaneously assess the morphology and transmembrane permeability of cells and their processes in the context of pathological changes in hypoxic-ischemic brain (HI) injury. Through Monte Carlo simulations and cell culture organoid imaging, we demonstrate feasibility in measuring effective size and permeability changes based on the peak and tail of t DKI curves. In a mouse model of HI, in vivo imaging at 11.7T detects a marked shift of the t DKI peak to longer t in brain edema, suggesting swelling and beading associated with the astrocytic processes and neuronal neurites. Furthermore, we observed a faster decrease of the t DKI tail in injured brain regions, reflecting increased membrane permeability that was associated with upregulated water exchange upon astrocyte activation at acute stage as well as necrosis with disrupted membrane integrity at subacute stage. Such information, unavailable with conventional diffusion MRI at a single t, can predict salvageable tissues. For a proof-of-concept, t DKI at 3T on an ischemic stroke patient suggested increased membrane permeability in the stroke region. This work therefore demonstrates the potential of t DKI for in vivo detection of the pathological changes in microstructural morphology and transmembrane permeability after ischemic injury using a clinically translatable protocol.

5.
Front Med Technol ; 5: 1074643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896342

RESUMO

Polynitroxylated PEGylated hemoglobin (PNPH, aka SanFlow) possesses superoxide dismutase/catalase mimetic activities that may directly protect the brain from oxidative stress. Stabilization of PNPH with bound carbon monoxide prevents methemoglobin formation during storage and permits it to serve as an anti-inflammatory carbon monoxide donor. We determined whether small volume transfusion of hyperoncotic PNPH is neuroprotective in a porcine model of traumatic brain injury (TBI) with and without accompanying hemorrhagic shock (HS). TBI was produced by controlled cortical impact over the frontal lobe of anesthetized juvenile pigs. Hemorrhagic shock was induced starting 5 min after TBI by 30 ml/kg blood withdrawal. At 120 min after TBI, pigs were resuscitated with 60 ml/kg lactated Ringer's (LR) or 10 or 20 ml/kg PNPH. Mean arterial pressure recovered to approximately 100 mmHg in all groups. A significant amount of PNPH was retained in the plasma over the first day of recovery. At 4 days of recovery in the LR-resuscitated group, the volume of frontal lobe subcortical white matter ipsilateral to the injury was 26.2 ± 7.6% smaller than homotypic contralateral volume, whereas this white matter loss was only 8.6 ± 12.0% with 20-ml/kg PNPH resuscitation. Amyloid precursor protein punctate accumulation, a marker of axonopathy, increased in ipsilateral subcortical white matter by 132 ± 71% after LR resuscitation, whereas the changes after 10 ml/kg (36 ± 41%) and 20 ml/kg (26 ± 15%) PNPH resuscitation were not significantly different from controls. The number of cortical neuron long dendrites enriched in microtubules (length >50 microns) decreased in neocortex by 41 ± 24% after LR resuscitation but was not significantly changed after PNPH resuscitation. The perilesion microglia density increased by 45 ± 24% after LR resuscitation but was unchanged after 20 ml/kg PNPH resuscitation (4 ± 18%). Furthermore, the number with an activated morphology was attenuated by 30 ± 10%. In TBI pigs without HS followed 2 h later by infusion of 10 ml/kg LR or PNPH, PNPH remained neuroprotective. These results in a gyrencephalic brain show that resuscitation from TBI + HS with PNPH protects neocortical gray matter, including dendritic microstructure, and white matter axons and myelin. This neuroprotective effect persists with TBI alone, indicating brain-targeting benefits independent of blood pressure restoration.

6.
Cells ; 11(21)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359844

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disease. Skeletal muscles and motor neurons (MNs) degenerate. ALS is a complex disease involving many genes in multiple tissues, the environment, cellular metabolism, and lifestyles. We hypothesized that epigenetic anomalies in DNA and RNA occur in ALS and examined this idea in: (1) mouse models of ALS, (2) human ALS, and (3) mouse ALS with therapeutic targeting of DNA methylation. Human superoxide dismutase-1 (hSOD1) transgenic (tg) mice were used. They expressed nonconditionally wildtype (WT) and the G93A and G37R mutant variants or skeletal muscle-restricted WT and G93A and G37R mutated forms. Age-matched non-tg mice were controls. hSOD1 mutant mice had increased DNA methyltransferase enzyme activity in spinal cord and skeletal muscle and increased 5-methylcytosine (5mC) levels. Genome-wide promoter CpG DNA methylation profiling in skeletal muscle of ALS mice identified hypermethylation notably in cytoskeletal genes. 5mC accumulated in spinal cord MNs and skeletal muscle satellite cells in mice. Significant increases in DNA methyltransferase-1 (DNMT1) and DNA methyltransferase-3A (DNMT3A) levels occurred in spinal cord nuclear and chromatin bound extracts of the different hSOD1 mouse lines. Mutant hSOD1 interacted with DNMT3A in skeletal muscle. 6-methyladenosine (6mA) RNA methylation was markedly increased or decreased in mouse spinal cord depending on hSOD1-G93A model, while fat mass and obesity associated protein was depleted and methyltransferase-like protein 3 was increased in spinal cord and skeletal muscle. Human ALS spinal cord had increased numbers of MNs and interneurons with nuclear 5mC, motor cortex had increased 5mC-positive neurons, while 6mA was severely depleted. Treatment of hSOD1-G93A mice with DNMT inhibitor improved motor function and extended lifespan by 25%. We conclude that DNA and RNA epigenetic anomalies are prominent in mouse and human ALS and are potentially targetable for disease-modifying therapeutics.


Assuntos
Esclerose Lateral Amiotrófica , Metilação de DNA , Metiltransferases , Processamento Pós-Transcricional do RNA , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , DNA/química , DNA/metabolismo , Metilação de DNA/genética , Metilação , Metiltransferases/metabolismo , Camundongos Transgênicos , Músculo Esquelético/metabolismo , RNA/química , RNA/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
J Comp Neurol ; 530(8): 1148-1163, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34687459

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) causes lifelong neurologic disability. Despite the use of therapeutic hypothermia, memory deficits and executive functions remain severely affected. Cholinergic neurotransmission from the basal forebrain to neocortex and hippocampus is central to higher cortical functions. We examined the basal forebrain by light microscopy and reported loss of choline acetyltransferase-positive (ChAT)+ neurons, at postnatal day (P) 40, in the ipsilateral medial septal nucleus (MSN) after neonatal hypoxia-ischemia (HI) in mice. There was no loss of ChAT+ neurons in the ipsilateral nucleus basalis of Meynert (nbM) and striatum. Ipsilateral striatal and nbM ChAT+ neurons were abnormal with altered immunoreactivity for ChAT, shrunken and crenated somas, and dysmorphic appearing dendrites. Using confocal images with 3D reconstruction, nbM ChAT+ dendrites in HI mice were shorter than sham (p = .0001). Loss of ChAT+ neurons in the MSN directly correlated with loss of ipsilateral hippocampal area. In the nbM and striatum, percentage of abnormal ChAT+ neurons correlated with loss of ipsilateral cerebral cortical and striatal area, respectively. Acetylcholinesterase (AChE) activity increased in adjacent ipsilateral cerebral cortex and hippocampus and the increase was linearly related to loss of cortical and hippocampal area. Numbers and size of cathepsin D+ lysosomes increased in large neurons in the ipsilateral nbM. After neonatal HI, abnormalities were found throughout the major cholinergic systems in relationship to amount of forebrain area loss. There was also an upregulation of cathepsin D+ particles within the nbM. Cholinergic neuropathology may underlie the permanent dysfunction in learning, memory, and executive function after neonatal brain injury.


Assuntos
Prosencéfalo Basal , Acetilcolinesterase/metabolismo , Animais , Prosencéfalo Basal/metabolismo , Colina O-Acetiltransferase/metabolismo , Colinérgicos , Fibras Colinérgicas/metabolismo , Hipóxia , Isquemia , Camundongos
8.
Cells ; 10(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34440889

RESUMO

Cerebral hypoxia-ischemia (HI) compromises the proteasome in a clinically relevant neonatal piglet model. Protecting and activating proteasomes could be an adjunct therapy to hypothermia. We investigated whether chymotrypsin-like proteasome activity differs regionally and developmentally in the neonatal brain. We also tested whether neonatal brain proteasomes can be modulated by oleuropein, an experimental pleiotropic neuroprotective drug, or by targeting a proteasome subunit gene using recombinant adeno-associated virus-9 (AAV). During post-HI hypothermia, we treated piglets with oleuropein, used AAV-short hairpin RNA (shRNA) to knock down proteasome activator 28γ (PA28γ), or enforced PA28γ using AAV-PA28γ with green fluorescent protein (GFP). Neonatal neocortex and subcortical white matter had greater proteasome activity than did liver and kidney. Neonatal white matter had higher proteasome activity than did juvenile white matter. Lower arterial pH 1 h after HI correlated with greater subsequent cortical proteasome activity. With increasing brain homogenate protein input into the assay, the initial proteasome activity increased only among shams, whereas HI increased total kinetic proteasome activity. OLE increased the initial neocortical proteasome activity after hypothermia. AAV drove GFP expression, and white matter PA28γ levels correlated with proteasome activity and subunit levels. However, AAV proteasome modulation varied. Thus, neonatal neocortical proteasomes can be pharmacologically activated. HI slows the initial proteasome performance, but then augments ongoing catalytic activity. AAV-mediated genetic manipulation in the piglet brain holds promise, though proteasome gene targeting requires further development.


Assuntos
Glucosídeos Iridoides/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipotermia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Camundongos , Suínos
9.
J Magn Reson Imaging ; 54(4): 1053-1065, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33955613

RESUMO

BACKGROUND: Disruption of brain oxygen delivery and consumption after hypoxic-ischemic injury contributes to neonatal mortality and neurological impairment. Measuring cerebral hemodynamic parameters, including cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ), is clinically important. PURPOSE: Phase-contrast (PC), velocity-selective arterial spin labeling (VSASL), and T2 -relaxation-under-phase-contrast (TRUPC) are magnetic resonance imaging (MRI) techniques that have shown promising results in assessing cerebral hemodynamics in humans. We aimed to test their feasibility in quantifying CBF, OEF, and CMRO2 in piglets. STUDY TYPE: Prospective. ANIMAL MODEL: Ten neonatal piglets subacutely recovered from global hypoxia-ischemia (N = 2), excitotoxic brain injury (N = 6), or sham procedure (N = 2). FIELD STRENGTH/SEQUENCE: VSASL, TRUPC, and PC MRI acquired at 3.0 T. ASSESSMENT: Regional CBF was measured by VSASL. Global CBF was quantified by both PC and VSASL. TRUPC assessed OEF at the superior sagittal sinus (SSS) and internal cerebral veins (ICVs). CMRO2 was calculated from global CBF and SSS-derived OEF. End-tidal carbon dioxide (EtCO2 ) levels of the piglets were also measured. Brain damage was assessed in tissue sections postmortem by counting damaged neurons. STATISTICAL TESTS: Spearman correlations were performed to evaluate associations among CBF (by PC or VSASL), OEF, CMRO2 , EtCO2 , and the pathological neuron counts. Paired t-test was used to compare OEF at SSS with OEF at ICV. RESULTS: Global CBF was 32.1 ± 14.9 mL/100 g/minute and 30.9 ± 8.3 mL/100 g/minute for PC and VSASL, respectively, showing a significant correlation (r = 0.82, P < 0.05). OEF was 54.9 ± 8.8% at SSS and 46.1 ± 5.6% at ICV, showing a significant difference (P < 0.05). Global CMRO2 was 79.1 ± 26.2 µmol/100 g/minute and 77.2 ± 12.2 µmol/100 g/minute using PC and VSASL-derived CBF, respectively. EtCO2 correlated positively with PC-based CBF (r = 0.81, P < 0.05) but negatively with OEF at SSS (r = -0.84, P < 0.05). Relative CBF of subcortical brain regions and OEF at ICV did not significantly correlate, respectively, with the ratios of degenerating-to-total neurons (P = 0.30, P = 0.10). DATA CONCLUSION: Non-contrast MRI can quantify cerebral hemodynamic parameters in normal and brain-injured neonatal piglets. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Circulação Cerebrovascular , Consumo de Oxigênio , Animais , Encéfalo/diagnóstico por imagem , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética , Oxigênio , Estudos Prospectivos , Suínos
10.
J Neurosci Res ; 99(6): 1550-1564, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675112

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) causes significant morbidity despite treatment with therapeutic hypothermia. Mitochondrial dysfunction may drive the mechanisms underlying neuronal cell death, thereby making mitochondria prime targets for neuroprotection. The mitochondrial permeability transition pore (mPTP) is one such target within mitochondria. In adult animal models, mPTP inhibition is neuroprotective. However, evidence for mPTP inhibition in neonatal models of neurologic disease is less certain. We tested the therapeutic efficacy of the mPTP small molecule inhibitor GNX-4728 and examined the developmental presence of brain mPTP proteins for drug targeting in a neonatal piglet model of hypoxic-ischemic brain injury. Male neonatal piglets were randomized to hypoxia-ischemia (HI) or sham procedure with GNX-4728 (15 mg/kg, IV) or vehicle (saline/cyclodextrin/DMSO, IV). GNX-4728 was administered as a single dose within 5 min after resuscitation from bradycardic arrest. Normal, ischemic, and injured neurons were counted in putamen and somatosensory cortex using hematoxylin and eosin staining. In separate neonatal and juvenile pigs, western blots of putamen mitochondrial-enriched fractions were used to evaluate mitochondrial integrity and the presence of mPTP proteins. We found that a single dose of GNX-4728 did not protect putamen and cortical neurons from cell death after HI. However, loss of mitochondrial matrix integrity occurred within 6h after HI, and while mPTP components are present in the neonatal brain their levels were significantly different compared to that of a mature juvenile brain. Thus, the neonatal brain mPTP may not be a good target for current neurotherapeutic drugs that are developed based on adult mitochondria.


Assuntos
Asfixia Neonatal/prevenção & controle , Hipóxia-Isquemia Encefálica/prevenção & controle , Poro de Transição de Permeabilidade Mitocondrial , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Morte Celular , Parada Cardíaca , Masculino , Putamen/patologia , Córtex Somatossensorial/patologia , Suínos
11.
Cells ; 10(2)2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557211

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration. There are no cures or effective treatments for ALS. Therapeutic hypothermia is effectively used clinically to mitigate mortality in patients with acute acquired brain injury and in surgical settings to minimize secondary brain injury. The efficacy of therapeutic hypothermia in chronic neurodegenerative disorders has not been examined. We tested the hypothesis that mild hypothermia/cold acclimation is therapeutic in a transgenic mouse model of ALS caused by expression of mutated human superoxide dismutase-1 gene. At presymptomatic stages of disease, body temperatures (oral and axial) of mutant male mice were persistently hyperthermic (38-38.5 °C) compared to littermate controls, but at end-stage disease mice were generally hypothermic (36-36.5 °C). Presymptomatic mutant mice (awake-freely moving) were acclimated to systemic mild hypothermia using an environmentally controlled chamber (12 h-on/12-off or 24 h-on/24 h-off) to lower body temperature (1-3 °C). Cooled ALS mice showed a significant delay in disease onset (103-112 days) compared to normothermia mice (80-90 days) and exhibited significant attenuation of functional decline in motor performance. Cooled mice examined at 80 days had reduced motor neuron loss, mitochondrial swelling, and spinal cord inflammation compared to non-cooled mice. Cooling attenuated the loss of heat-shock protein 70, mitochondrial uncoupling protein-3, and sumoylated-1 (SUMO1)-conjugated proteins in skeletal muscle and disengaged the mitochondrial permeability transition pore. Cooled ALS mice had a significant extension of lifespan (148 ± 7 days) compared to normothermic mice (135 ± 4 days). Thus, intermittent systemic mild hypothermia is therapeutic in mouse ALS with protective effects manifested within the CNS and skeletal muscle that target mitochondria.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Hipotermia Induzida , Aclimatação , Esclerose Lateral Amiotrófica/complicações , Animais , Doença Crônica , Temperatura Baixa , Citoproteção , Modelos Animais de Doenças , Febre/complicações , Humanos , Inflamação/patologia , Masculino , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/patologia , Medula Espinal/patologia , Superóxido Dismutase-1/metabolismo , Análise de Sobrevida
12.
J Comp Neurol ; 529(10): 2750-2770, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543493

RESUMO

The specific cytopathology that causes abnormal fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) after neonatal hypoxia-ischemia (HI) is not completely understood. The panoply of cell types in the brain might contribute differentially to changes in DTI metrics. Because glia are the predominant cell type in brain, we hypothesized that changes in FA and MD would signify perturbations in glial microstructure. Using a 3-Tesla clinical scanner, we conducted in vivo DTI MRI in nine neonatal piglets at 20-96 h after excitotoxic brain injury from striatal quinolinic acid injection or global HI. FA and MD from putamen, caudate, and internal capsule in toto were correlated with astrocyte swelling, neuronal excitotoxicity, and white matter injury. Low FA correlated with more swollen astrocytes immunophenotyped by aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), and glutamate transporter-1 (GLT-1). Low FA was also related to the loss of neurons with perineuronal GLT-1+ astrocyte decorations, large myelin swellings, lower myelin density, and oligodendrocyte cell death identified by 2',3'-cyclic nucleotide 3'-phosphodiesterase, bridging integrator-1, and nuclear morphology. MD correlated with degenerating oligodendrocytes and depletion of normal GFAP+ astrocytes but not with astrocyte or myelin swelling. We conclude that FA is associated with cytotoxic edema in astrocytes and oligodendrocyte processes as well as myelin injury at the cellular level. MD can detect glial cell death and loss, but it may not discern subtle pathology in swollen astrocytes, oligodendrocytes, or myelin. This study provides a cytopathologic basis for interpreting DTI in the neonatal brain after HI.


Assuntos
Anisotropia , Astrócitos/patologia , Imagem de Tensor de Difusão/métodos , Hipóxia-Isquemia Encefálica/patologia , Bainha de Mielina/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Masculino , Suínos
14.
J Cereb Blood Flow Metab ; 41(5): 1039-1057, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32703109

RESUMO

Neonatal hypoxia-ischemia (nHI) disrupts hippocampal GABAergic development leading to memory deficits in mice. Polysialic-acid neural-cell adhesion molecule (PSA-NCAM) developmentally declines to trigger GABAergic maturation. We hypothesized that nHI changes PSA-NCAM abundance and cellular distribution, impairing GABAergic development, and marking nascent neurodegeneration. Cell degeneration, atrophy, and PSA-NCAM immunoreactivity (IR) were measured in CA1 of nHI-injured C57BL6 mice related to: (i) cellular subtype markers; (ii) GAD65/67 and synatophysin (SYP), pre-synaptic markers; (iii) phospho-Ser396Tau, cytoskeletal marker; and (iv) GAP43, axonalregeneration marker. PSA-NCAM IR was minimal in CA1 of shams at P11. After nHI, PSA-NCAM IR was increased in injured pyramidal cells (PCs), minimal in parvalbumin (PV)+INs, and absent in glia. PSA-NCAM IR correlated with injury severity and became prominent in perikaryal cytoplasm at P18. GAD65/67 and SYP IRs only weakly related to PSA-NCAM after nHI. Injured phospho-Ser396Tau+ PCs and PV+INs variably co-expressed PSA-NCAM at P40. While PCs with cytoplasmic marginalized PSA-NCAM had increased perisomatic GAP43, those with perikaryal cytoplasmic PSA-NCAM had minimal GAP43. PSA-NCAM increased in serum of nHI-injured mice. Increased PSA-NCAM is likely a generic acute response to nHI brain injury. PSA-NCAM aberrant cellular localization may aggravate neuronal degeneration. The significance of PSA-NCAM as a biomarker of recovery from nHI and nascent neurodegeneration needs further study.


Assuntos
Lesões Encefálicas/metabolismo , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Doenças Neurodegenerativas/metabolismo , Ácidos Siálicos/metabolismo , Animais , Lesões Encefálicas/patologia , Região CA1 Hipocampal/metabolismo , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Glutamato Descarboxilase/metabolismo , Hipóxia-Isquemia Encefálica/complicações , Escala de Gravidade do Ferimento , Masculino , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Molécula L1 de Adesão de Célula Nervosa/imunologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Ácidos Siálicos/imunologia , Sinaptofisina/metabolismo , Proteínas tau/metabolismo
15.
J Neuropathol Exp Neurol ; 80(2): 182-198, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33212486

RESUMO

Neonatal hypoxia-ischemia (HI) causes white matter injury that is not fully prevented by therapeutic hypothermia. Adjuvant treatments are needed. We compared myelination in different piglet white matter regions. We then tested whether oleuropein (OLE) improves neuroprotection in 2- to 4-day-old piglets randomized to undergo HI or sham procedure and OLE or vehicle administration beginning at 15 minutes. All groups received overnight hypothermia and rewarming. Injury in the subcortical white matter, corpus callosum, internal capsule, putamen, and motor cortex gray matter was assessed 1 day later. At baseline, piglets had greater subcortical myelination than in corpus callosum. Hypothermic HI piglets had scant injury in putamen and cerebral cortex. However, hypothermia alone did not prevent the loss of subcortical myelinating oligodendrocytes or the reduction in subcortical myelin density after HI. Combining OLE with hypothermia improved post-HI subcortical white matter protection by preserving myelinating oligodendrocytes, myelin density, and oligodendrocyte markers. Corpus callosum and internal capsule showed little HI injury after hypothermia, and OLE accordingly had minimal effect. OLE did not affect putamen or motor cortex neuron counts. Thus, OLE combined with hypothermia protected subcortical white matter after HI. As an adjuvant to hypothermia, OLE may subacutely improve regional white matter protection after HI.


Assuntos
Encéfalo/efeitos dos fármacos , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/terapia , Glucosídeos Iridoides/farmacologia , Neuroproteção/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Substância Branca/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Terapia Combinada , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/patologia , Glucosídeos Iridoides/uso terapêutico , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Suínos , Substância Branca/patologia
16.
Front Cell Neurosci ; 14: 604171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328898

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by gradual degeneration and elimination of motor neurons (MNs) in the motor cortex, brainstem, and spinal cord. Some familial forms of ALS are caused by genetic mutations in superoxide dismutase 1 (SOD1) but the mechanisms driving MN disease are unclear. Identifying the naturally occurring pathology and understanding how this mutant SOD1 can affect MNs in translationally meaningful ways in a valid and reliable human cell model remains to be established. Here, using CRISPR/Cas9 genome editing system and human induced pluripotent stem cells (iPSCs), we generated highly pure, iPSC-derived MNs with a SOD1-G93A missense mutation. With the wild-type cell line serving as an isogenic control and MNs from a patient-derived iPSC line with an SOD1-A4V mutation as a comparator, we identified pathological phenotypes relevant to ALS. The mutant MNs accumulated misfolded and aggregated forms of SOD1 in cell bodies and processes, including axons. They also developed distinctive axonal pathologies. Mutants had axonal swellings with shorter axon length and less numbers of branch points. Moreover, structural and molecular abnormalities in presynaptic and postsynaptic size and density were found in the mutants. Finally, functional studies with microelectrode array demonstrated that the individual mutant MNs exhibited decreased number of spikes and diminished network bursting, but increased burst duration. Taken together, we identified spontaneous disease phenotypes relevant to ALS in mutant SOD1 MNs from genome-edited and patient-derived iPSCs. Our findings demonstrate that SOD1 mutations in human MNs cause cell-autonomous proteinopathy, axonopathy, synaptic pathology, and aberrant neurotransmission.

17.
Front Neurol ; 11: 592851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381076

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal heterogeneous neurodegenerative disease that causes motor neuron (MN) loss and skeletal muscle paralysis. It is uncertain whether this degeneration of MNs is triggered intrinsically and is autonomous, or if the disease initiating mechanisms are extrinsic to MNs. We hypothesized that skeletal muscle is a primary site of pathogenesis in ALS that triggers MN degeneration. Some inherited forms of ALS are caused by mutations in the superoxide dismutase-1 (SOD1) gene, that encodes an antioxidant protein, so we created transgenic (tg) mice expressing wild-type-, G37R-, and G93A-human SOD1 gene variants only in skeletal muscle. Presence of human SOD1 (hSOD1) protein in skeletal muscle was verified by western blotting, enzyme activity gels, and immunofluorescence in myofibers and satellite cells. These tg mice developed limb weakness and paresis with motor deficits, limb and chest muscle wasting, diaphragm atrophy, and age-related fatal disease with a lifespan shortening of 10-16%. Brown and white adipose tissue also became wasted. Myofibers of tg mice developed crystalline-like inclusions, individualized sarcomere destruction, mitochondriopathy with vesiculation, DNA damage, and activated p53. Satellite cells became apoptotic. The diaphragm developed severe loss of neuromuscular junction presynaptic and postsynaptic integrity, including decreased innervation, loss of synaptophysin, nitration of synaptophysin, and loss of nicotinic acetylcholine receptor and scaffold protein rapsyn. Co-immunoprecipitation identified hSOD1 interaction with rapsyn. Spinal cords of tg mice developed gross atrophy. Spinal MNs formed cytoplasmic and nuclear inclusions, axonopathy, mitochondriopathy, accumulated DNA damage, activated p53 and cleaved caspase-3, and died. Tg mice had a 40-50% loss of MNs. This work shows that hSOD1 in skeletal muscle is a driver of pathogenesis in ALS, that involves myofiber and satellite cell toxicity, and apparent muscle-adipose tissue disease relationships. It also identifies a non-autonomous mechanism for MN degeneration explaining their selective vulnerability as likely a form of target-deprivation retrograde neurodegeneration.

18.
BMC Neurosci ; 21(1): 43, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33129262

RESUMO

BACKGROUND: Cardiac arrest (CA) is the most common cause of acute neurologic insult in children. Many survivors have significant neurocognitive deficits at 1 year of recovery. Epoxyeicosatrienoic acids (EETs) are multifunctional endogenous lipid signaling molecules that are involved in brain pathobiology and may be therapeutically relevant. However, EETs are rapidly metabolized to less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH), limiting their bioavailability. We hypothesized that sEH inhibition would improve outcomes after CA in an infant swine model. Male piglets (3-4 kg, 2 weeks old) underwent hypoxic-asphyxic CA. After resuscitation, they were randomized to intravenous treatment with an sEH inhibitor (TPPU, 1 mg/kg; n = 8) or vehicle (10% poly(ethylene glycol); n = 9) administered at 30 min and 24 h after return of spontaneous circulation. Two sham-operated groups received either TPPU (n = 9) or vehicle (n = 8). Neurons were counted in hematoxylin- and eosin-stained sections from putamen and motor cortex in 4-day survivors. RESULTS: Piglets in the CA + vehicle groups had fewer neurons than sham animals in both putamen and motor cortex. However, the number of neurons after CA did not differ between vehicle- and TPPU-treated groups in either anatomic area. Further, 20% of putamen neurons in the Sham + TPPU group had abnormal morphology, with cell body attrition and nuclear condensation. TPPU treatment also did not reduce neurologic deficits. CONCLUSION: Treatment with an sEH inhibitor at 30 min and 24 h after resuscitation from asphyxic CA does not protect neurons or improve acute neurologic outcomes in piglets.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Parada Cardíaca/complicações , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Animais , Asfixia/patologia , Morte Celular , Estresse do Retículo Endoplasmático , Masculino , Córtex Motor/patologia , Neurônios/patologia , Compostos de Fenilureia/uso terapêutico , Piperidinas/uso terapêutico , Putamen/patologia , Suínos , Resultado do Tratamento
19.
J Magn Reson Imaging ; 52(4): 1216-1226, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396711

RESUMO

BACKGROUND: Diffusion MRI is routinely used to evaluate brain injury in neonatal encephalopathy. Although abnormal mean diffusivity (MD) is often attributed to cytotoxic edema, the specific contribution from neuronal pathology is unclear. PURPOSE: To determine whether MD from high-resolution diffusion tensor imaging (DTI) can detect variable degrees of neuronal degeneration and pathology in piglets with brain injury induced by excitotoxicity or global hypoxia-ischemia (HI) with or without overt infarction. STUDY TYPE: Prospective. ANIMAL MODEL: Excitotoxic brain injury was induced in six neonatal piglets by intrastriatal stereotaxic injection of the glutamate receptor agonist quinolinic acid (QA). Three piglets underwent global HI or a sham procedure. Piglets recovered for 20-96 hours before undergoing MRI (n = 9). FIELD STRENGTH/SEQUENCE: 3.0T MRI with DTI, T1 - and T2 -weighted imaging. ASSESSMENT: MD, fractional anisotropy (FA), and qualitative T2 injury were assessed in the putamen and caudate. The cell bodies of normal neurons, degenerating neurons (excitotoxic necrosis, ischemic necrosis, or necrosis-apoptosis cell death continuum), and injured neurons with equivocal degeneration were counted by histopathology. STATISTICAL TESTS: Spearman correlations were used to compare MD and FA to normal, degenerating, and injured neurons. T2 injury and neuron counts were evaluated by descriptive analysis. RESULTS: The QA insult generated titratable levels of neuronal pathology. In QA, HI, and sham piglets, lower MD correlated with higher ratios of degenerating-to-total neurons (P < 0.05), lower ratios of normal-to-total neurons (P < 0.05), and greater numbers of degenerating neurons (P < 0.05). MD did not correlate with abnormal neurons exhibiting nascent injury (P > 0.99). Neuron counts were not related to FA (P > 0.30) or to qualitative injury from T2 -weighted MRI. DATA CONCLUSION: MD is more accurate than FA for detecting neuronal degeneration and loss during acute recovery from neonatal excitotoxic and HI brain injury. MD does not reliably detect nonfulminant, nascent, and potentially reversible neuronal injury. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2 J. Magn. Reson. Imaging 2020;52:1216-1226.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Animais , Morte Celular , Neurônios , Projetos Piloto , Estudos Prospectivos , Suínos
20.
Acta Neuropathol Commun ; 8(1): 7, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005289

RESUMO

DNA damage is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, relationships between DNA damage accumulation, DNA damage response (DDR), and upper and lower motor neuron vulnerability in human ALS are unclear; furthermore, it is unknown whether epigenetic silencing of DNA repair pathways contributes to ALS pathogenesis. We tested the hypotheses that DNA damage accumulates in ALS motor neurons along with diminished DDR, and that DNA repair genes undergo hypermethylation. Human postmortem CNS tissue was obtained from ALS cases (N = 34) and age-matched controls without neurologic disease (N = 15). Compared to age-matched controls, abasic sites accumulated in genomic DNA of ALS motor cortex and laser capture microdissection-acquired spinal motor neurons but not in motor neuron mitochondrial DNA. By immunohistochemistry, DNA damage accumulated significantly in upper and lower motor neurons in ALS cases as single-stranded DNA and 8-hydroxy-deoxyguanosine (OHdG) compared to age-matched controls. Significant DDR was engaged in ALS motor neurons as evidenced by accumulation of c-Abl, nuclear BRCA1, and ATM activation. DNA damage and DDR were present in motor neurons at pre-attritional stages and throughout the somatodendritic attritional stages of neurodegeneration. Motor neurons with DNA damage were also positive for activated p53 and cleaved caspase-3. Gene-specific promoter DNA methylation pyrosequencing identified the DNA repair genes Ogg1, Apex1, Pnkp and Aptx as hypomethylated in ALS. In human induced-pluripotent stem cell (iPSC)-derived motor neurons with familial ALS SOD1 mutations, DNA repair capacity was similar to isogenic control motor neurons. Our results show that vulnerable neurons in human ALS accumulate DNA damage, and contrary to our hypothesis, strongly activate and mobilize response effectors and DNA repair genes. This DDR in ALS motor neurons involves recruitment of c-Abl and BRCA1 to the nucleus in vivo, and repair of DNA double-strand breaks in human ALS motor neurons with SOD1 mutations in cell culture.


Assuntos
Esclerose Lateral Amiotrófica/genética , Dano ao DNA , Reparo do DNA , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Morte Celular/genética , Feminino , Genes BRCA1 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Neuroglia/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...