Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Neuropeptides ; 94: 102258, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660758

RESUMO

Diabetic retinopathy (DR) is a neurodegenerative disease that results as a complication of dysregulated glucose metabolism, or diabetes. The signaling of insulin is lost or dampened in diabetes, but this hormone has also been shown to be an important neurotrophic factor which supports neurons of the brain. The role of local insulin synthesis and secretion in the retina, however, is unclear. We have investigated whether changes in local insulin synthesis occur in the diabetic retina and in response to stressors known to initiate retinal neurodegenerative processes. The expression of insulin and its cleavage product, c-peptide, were examined in retinas of a Type I diabetes animal model and human postmortem donors with DR. We detected mRNAs for insulin I (Ins1), insulin II (Ins2) and human insulin (Ins) by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Using an ex-vivo system, isolated neuroretinas and retinal pigmented epithelium (RPE) layers were exposed to glycemic, oxidative and inflammatory environments to measure insulin gene transcripts produced de novo in the retina under disease-relevant conditions. The expression of insulin in the retina was altered with the progression of diabetes in STZ mice and donors with DR. Transcription factors for insulin, were simultaneously expressed in a pattern matching insulin genes. Furthermore, de novo insulin mRNA in isolated retinas was induced by acute stress. RPE explants displayed the most pronounced changes in Ins1 and Ins2. This data reveals that the retina, like the brain, is an organ capable of producing local insulin and this synthesis is altered in diabetes.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Doenças Neurodegenerativas , Animais , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Insulina/farmacologia , Camundongos , RNA Mensageiro/metabolismo , Retina/metabolismo
2.
Exp Eye Res ; 221: 109129, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649469

RESUMO

Preservation of retinal barrier function is critical to maintenance of retinal health. Therefore, it is not surprising that loss of barrier integrity is a pathologic feature common to degenerative retinal diseases such as diabetic retinopathy. Our prior studies demonstrate the importance of hydroxycarboxylic acid receptor 2/GPR109A (HCAR2/GPR109A) expression in the retinal pigment epithelium (RPE) to outer retinal barrier integrity. However, whether HCAR2/GPR109A is expressed in retinal endothelial cells and has a similar relationship to inner blood retinal barrier regulation is not known. In the current study, we examined relevance of receptor expression to endothelial cell dependent-blood retinal barrier integrity. siRNA technology was used to modulate HCAR2/GPR109A expression in human retinal endothelial cells (HRECs). Cells were cultured in the presence or absence of VEGF, a pro-inflammatory stimulus, and/or various concentrations of the HCAR2/GPR109A-specific agonist beta-hydyroxybutyrate (BHB). HCAR2/GPR109A expression was monitored by qPCR and electrical cell impedance sensing (ECIS) was used to evaluate barrier function. Complementary in vivo studies were conducted in wildtype and HCAR2/GPR109A knockout mice treated intraperitoneally with lipopolysaccharide and/or BHB. Vascular leakage was monitored using fluorescein angiography and Western blot analyses of albumin extravasation. Additionally, retinal function was evaluated by OptoMotry. Decreased (siRNA knockdown) or absent (gene knockout) HCAR2/GPR109A expression was associated with impaired barrier function both in vitro and in vivo. BHB treatment provided some protection, limiting disruptions in retinal barrier integrity and function; an effect that was found to be receptor (HCAR2/GPR109A)-dependent. Collectively, the present studies support a key role for HCAR2/GPR109A in regulating blood-retinal barrier integrity and highlight the therapeutic potential of the receptor toward preventing and treating retinal diseases such as diabetic retinopathy in which compromised barrier function is paramount.


Assuntos
Retinopatia Diabética , Receptores Acoplados a Proteínas G , Doenças Retinianas , Animais , Barreira Hematorretiniana/metabolismo , Proteínas de Transporte/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Cetonas/metabolismo , Cetonas/uso terapêutico , Camundongos , RNA Interferente Pequeno/uso terapêutico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Doenças Retinianas/metabolismo
4.
Antioxidants (Basel) ; 10(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067655

RESUMO

Inflammation and oxidative stress play prominent roles in the pathogenesis of many degenerative diseases of the retina, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), retinal vein occlusion, and retinitis pigmentosa [...].

5.
Mol Cancer Res ; 19(9): 1486-1497, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34099522

RESUMO

DNA damage, induced by either chemical carcinogens or environmental pollutants, plays an important role in the initiation of colorectal cancer. DNA repair processes, however, are involved in both protecting against cancer formation, and also contributing to cancer development, by ensuring genomic integrity and promoting the efficient DNA repair in tumor cells, respectively. Although DNA repair pathways have been well exploited in the treatment of breast and ovarian cancers, the role of DNA repair processes and their therapeutic efficacy in colorectal cancer is yet to be appreciably explored. To understand the role of DNA repair, especially homologous recombination (HR), in chemical carcinogen-induced colorectal cancer growth, we unraveled the role of RAD51AP1 (RAD51-associated protein 1), a protein involved in HR, in genotoxic carcinogen (azoxymethane, AOM)-induced colorectal cancer. Although AOM treatment alone significantly increased RAD51AP1 expression, the combination of AOM and dextran sulfate sodium (DSS) treatment dramatically increased by several folds. RAD51AP1 expression is found in mouse colonic crypt and proliferating cells. RAD51AP1 expression is significantly increased in majority of human colorectal cancer tissues, including BRAF/KRAS mutant colorectal cancer, and associated with reduced treatment response and poor prognosis. Rad51ap1-deficient mice were protected against AOM/DSS-induced colorectal cancer. These observations were recapitulated in a genetically engineered mouse model of colorectal cancer (ApcMin /+ ). Furthermore, chemotherapy-resistant colorectal cancer is associated with increased RAD51AP1 expression. This phenomenon is associated with reduced cell proliferation and colorectal cancer stem cell (CRCSC) self-renewal. Overall, our studies provide evidence that RAD51AP1 could be a novel diagnostic marker for colorectal cancer and a potential therapeutic target for colorectal cancer prevention and treatment. IMPLICATIONS: This study provides first in vivo evidence that RAD51AP1 plays a critical role in colorectal cancer growth and drug resistance by regulating CRCSC self-renewal.


Assuntos
Autorrenovação Celular , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
6.
Biomolecules ; 11(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669313

RESUMO

Bile acids (BAs) are amphipathic sterols primarily synthesized from cholesterol in the liver and released in the intestinal lumen upon food intake. BAs play important roles in micellination of dietary lipids, stimulating bile flow, promoting biliary phospholipid secretion, and regulating cholesterol synthesis and elimination. Emerging evidence, however, suggests that, aside from their conventional biological function, BAs are also important signaling molecules and therapeutic tools. In the last decade, the therapeutic applications of BAs in the treatment of ocular diseases have gained great interest. Despite the identification of BA synthesis, metabolism, and recycling in ocular tissues, much remains unknown with regards to their biological significance in the eye. Additionally, as gut microbiota directly affects the quality of circulating BAs, their analysis could derive important information on changes occurring in this microenvironment. This review aims at providing an overview of BA metabolism and biological function with a focus on their potential therapeutic and diagnostic use for retinal diseases.


Assuntos
Ácidos e Sais Biliares/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo , Animais , Colestase , Colesterol/metabolismo , Microbioma Gastrointestinal , Humanos , Inflamação , Intestinos , Fígado/metabolismo , Camundongos , Microbiota , Transdução de Sinais
7.
Antioxidants (Basel) ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670526

RESUMO

Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.

8.
Antioxidants (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374239

RESUMO

Oxidative damage has been identified as a major causative factor in degenerative diseases of the retina; retinal pigment epithelial (RPE) cells are at high risk. Hence, identifying novel strategies for increasing the antioxidant capacity of RPE cells, the purpose of this study, is important. Specifically, we evaluated the influence of selenium in the form of selenomethionine (Se-Met) in cultured RPE cells on system xc- expression and functional activity and on cellular levels of glutathione, a major cellular antioxidant. ARPE-19 and mouse RPE cells were cultured with and without selenomethionine (Se-Met), the principal form of selenium in the diet. Promoter activity assay, uptake assay, RT-PCR, northern and western blots, and immunofluorescence were used to analyze the expression of xc-, Nrf2, and its target genes. Se-Met activated Nrf2 and induced the expression and function of xc- in RPE. Other target genes of Nrf2 were also induced. System xc- consists of two subunits, and Se-Met induced the subunit responsible for transport activity (SLC7A11). Selenocysteine also induced xc- but with less potency. The effect of Se-met on xc- was associated with an increase in maximal velocity and an increase in substrate affinity. Se-Met increased the cellular levels of glutathione in the control, an oxidatively stressed RPE. The Se-Met effect was selective; under identical conditions, taurine transport was not affected and Na+-coupled glutamate transport was inhibited. This study demonstrates that Se-Met enhances the antioxidant capacity of RPE by inducing the transporter xc- with a consequent increase in glutathione.

9.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751103

RESUMO

Retinal ischemia contributes to visual impairment in ischemic retinopathies. A disintegrin and metalloproteinase ADAM17 is implicated in multiple vascular pathologies through its ability to regulate inflammatory signaling via ectodomain shedding. We investigated the role of endothelial ADAM17 in neuronal and vascular degeneration associated with retinal ischemia reperfusion (IR) injury using mice with conditional inactivation of ADAM17 in vascular endothelium. ADAM17Cre-flox and control ADAM17flox mice were subjected to 40 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Albumin extravasation and retinal leukostasis were evaluated 48 h after reperfusion. Retinal morphometric analysis was conducted 7 days after reperfusion. Degenerate capillaries were assessed by elastase digest and visual function was evaluated by optokinetic test 14 and 7 days following ischemia, respectively. Lack of ADAM17 decreased vascular leakage and reduced retinal thinning and ganglion cell loss in ADAM17Cre-flox mice. Further, ADAM17Cre-flox mice exhibited a remarkable reduction in capillary degeneration following IR. Decrease in neurovascular degeneration in ADAM17Cre-flox mice correlated with decreased activation of caspase-3 and was associated with reduction in oxidative stress and retinal leukostasis. In addition, knockdown of ADAM17 resulted in decreased cleavage of p75NTR, the process known to be associated with retinal cell apoptosis. A decline in visual acuity evidenced by decrease in spatial frequency threshold observed in ADAM17flox mice was partially restored in ADAM17-endothelial deficient mice. The obtained results provide evidence that endothelial ADAM17 is an important contributor to IR-induced neurovascular damage in the retina and suggest that interventions directed at regulating ADAM17 activity can be beneficial for alleviating the consequences of retinal ischemia.


Assuntos
Proteína ADAM17/genética , Leucostasia/genética , Traumatismo por Reperfusão/genética , Degeneração Retiniana/genética , Células Ganglionares da Retina/metabolismo , Proteína ADAM17/deficiência , Albuminas/metabolismo , Animais , Apoptose/genética , Permeabilidade Capilar , Caspase 3/genética , Caspase 3/metabolismo , Adesão Celular , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Leucócitos/metabolismo , Leucócitos/patologia , Leucostasia/metabolismo , Leucostasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia
10.
Antioxidants (Basel) ; 9(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660051

RESUMO

We investigated the contributing role of the histone deacetylase 6 (HDAC6) to the early stages of diabetic retinopathy (DR). Furthermore, we examined the mechanism of action of HDAC6 in human retinal endothelial cells (HuREC) exposed to glucidic stress. Streptozotocin-induced diabetic rats (STZ-rats), a rat model of type 1 diabetes, were used as model of DR. HDAC6 expression and activity were increased in human diabetic postmortem donors and STZ-rat retinas and were augmented in HuREC exposed to glucidic stress (25 mM glucose). Administration of the HDAC6 specific inhibitor Tubastatin A (TS) (10 mg/kg) prevented retinal microvascular hyperpermeability and up-regulation of inflammatory markers. Furthermore, in STZ-rats, TS decreased the levels of senescence markers and rescued the expression and activity of the histone deacetylase sirtuin 1 (SIRT1), while downregulating the levels of free radicals and of the redox stress markers 4-hydroxynonenal (4-HNE) and nitrotyrosine (NT). The antioxidant effects of TS, consequent to HDAC6 inhibition, were associated with preservation of Nrf2-dependent gene expression and up-regulation of thioredoxin-1 activity. In vitro data, obtained from HuREC, exposed to glucidic stress, largely replicated the in vivo results further confirming the antioxidant effects of HDAC6 inhibition by TS in the diabetic rat retina. In summary, our data implicate HDAC6 activation in mediating hyperglycemia-induced retinal oxidative/nitrative stress leading to retinal microangiopathy and, potentially, DR.

11.
J Clin Med ; 9(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575487

RESUMO

Retinopathy of prematurity (ROP) is the leading cause of blindness in infants. We have investigated the efficacy of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine and glycine conjugated derivatives tauroursodeoxycholic acid (TUDCA) and glycoursodeoxycholic acid (GUDCA) in preventing retinal neovascularization (RNV) in an experimental model of ROP. Seven-day-old mice pups (P7) were subjected to oxygen-induced retinopathy (OIR) and were treated with bile acids for various durations. Analysis of retinal vascular growth and distribution revealed that UDCA treatment (50 mg/kg, P7-P17) of OIR mice decreased the extension of neovascular and avascular areas, whereas treatments with TUDCA and GUDCA showed no changes. UDCA also prevented reactive gliosis, preserved ganglion cell survival, and ameliorated OIR-induced blood retinal barrier dysfunction. These effects were associated with decreased levels of oxidative stress markers, inflammatory cytokines, and normalization of the VEGF-STAT3 signaling axis. Furthermore, in vitro tube formation and permeability assays confirmed UDCA inhibitory activity toward VEGF-induced pro-angiogenic and pro-permeability effects on human retinal microvascular endothelial cells. Collectively, our results suggest that UDCA could represent a new effective therapy for ROP.

12.
Oxid Med Cell Longev ; 2020: 2692794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32454935

RESUMO

Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. This is surprising given the critical causative impact of mitochondrial oxidative damage and bioenergetic crises on the development and progression of degenerative disease of the retina. Hence, the role of NAD+ in this tissue, normally and aging and/or disease, should not be ignored. Herein, we discuss important findings in the field of NAD+ metabolism, with particular emphasis on the importance of the NAD+ biosynthesizing enzyme NAMPT, the related metabolism of NAD+ in the retina, and the consequences of NAMPT and NAD+ deficiency or depletion in this tissue in aging and disease. We discuss also the implications of potential therapeutic strategies that augment NAD+ levels on the preservation of retinal health and function in the above conditions. The overarching goal of this review is to emphasize the importance of NAD+ metabolism in normal, aging, and/or diseased retina and, by so doing, highlight the necessity of additional clinical studies dedicated to evaluating the therapeutic utility of strategies that enhance NAD+ levels in improving vision.


Assuntos
Envelhecimento/metabolismo , NAD/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Animais , Vias Biossintéticas , Humanos , Mitocôndrias/metabolismo , NAD/biossíntese
13.
Sci Rep ; 10(1): 7468, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366945

RESUMO

Recent epidemiological  studies link Periodontal disease(PD) to age-related macular degeneration (AMD). We documented earlier that Porphyromonas gingivalis(Pg), keystone oral-pathobiont, causative of PD, efficiently invades human gingival epithelial and blood-dendritic cells. Here, we investigated the ability of dysbiotic Pg-strains to invade human-retinal pigment epithelial cells(ARPE-19), their survival, intracellular localization, and the pathological effects, as dysfunction of RPEs leads to AMD. We show that live, but not heat-killed Pg-strains adhere to and invade ARPEs. This involves early adhesion to ARPE cell membrane, internalization and localization of Pg within single-membrane vacuoles or cytosol, with some nuclear localization apparent. No degradation of Pg or localization inside double-membrane autophagosomes was evident, with dividing Pg suggesting a metabolically active state during invasion. We found significant downregulation of autophagy-related genes particularly, autophagosome complex. Antibiotic protection-based recovery assay further confirmed distinct processes of adhesion, invasion and amplification of Pg within ARPE cells. This is the first study to demonstrate invasion of human-RPEs, begin to characterize intracellular localization and survival of Pg within these cells. Collectively, invasion of RPE by Pg and its prolonged survival by autophagy evasion within these cells suggest a strong rationale for studying the link between oral infection and AMD pathogenesis in individuals with periodontitis.


Assuntos
Autofagossomos , Autofagia , Infecções por Bacteroidaceae , Citosol , Porphyromonas gingivalis , Epitélio Pigmentado da Retina , Vacúolos , Autofagossomos/metabolismo , Autofagossomos/microbiologia , Autofagossomos/ultraestrutura , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Linhagem Celular , Citosol/metabolismo , Citosol/microbiologia , Citosol/ultraestrutura , Humanos , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/ultraestrutura , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/microbiologia , Epitélio Pigmentado da Retina/ultraestrutura , Vacúolos/microbiologia , Vacúolos/patologia , Vacúolos/ultraestrutura
14.
Data Brief ; 28: 104874, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31890774

RESUMO

The data presented in this article are connected to our related article entitled "Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in retinal pigmented epithelial cells (RPE) and protects against oxidative stress-induced outer retinal degeneration" [1] where, we have shown that miR-144 induces oxidative stress in RPE cells by targeting Nrf2 expression. Previous studies from our laboratory have shown that like erythroid cells, RPE cells express α, ß and γ-globin and produce hemoglobin locally in retina. Further, the ability to therapeutically reactivate fetal hemoglobin production in these cells, a strategy of high potential benefit in the treatment of complications of sickle cell disease, including retinopathy, is impacted by Nrf2-mediated signaling [2,3]. Studies by others [4,5] provide compelling evidence of a regulatory role for miR-144 and Nrf2 in fetal hemoglobin production in erythroid cells. Our current work confirms this finding in human RPE. We additionally show that miR-144-mediated regulation of fetal hemoglobin production in RPE cells is independent of kruppel like factor 1 (KLF-1). This supports the plausibility that in RPE, hemoglobin, particularly fetal hemoglobin, may be important for functions other than oxygen transport (e.g., antioxidant defense). Indeed, our new data on miR-144 in RPE supports strongly the potential mechanistic between fetal hemoglobin production and the regulation of oxidative stress in this cell type [1].

15.
Redox Biol ; 28: 101314, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514051

RESUMO

Nuclear factor-erythroid 2 related factor 2 (Nrf2)-mediated signaling plays a central role in maintaining cellular redox homeostasis of hepatic cells. Carbon monoxide releasing molecule-A1 (CORM-A1) has been reported to stimulate up-regulation and nuclear translocation of Nrf2 in hepatocytes. However, the role of CORM-A1 in improving lipid metabolism, antioxidant signaling and mitochondrial functions in nonalcoholic steatohepatitis (NASH) is unknown. In this study, we report that CORM-A1 prevents hepatic steatosis in high fat high fructose (HFHF) diet fed C57BL/6J mice, used as model of NASH. The beneficial effects of CORM-A1 in HFHF fed mice was associated with improved lipid homeostasis, Nrf2 activation, upregulation of antioxidant responsive (ARE) genes and increased ATP production. As, mitochondria are intracellular source of reactive oxygen species (ROS) and important sites of lipid metabolism, we further investigated the mechanisms of action of CORM-A1-mediated improvement in mitochondrial function in palmitic acid (PA) treated HepG2 cells. Cellular oxidative stress and cell viability were found to be improved in PA + CORM-A1 treated cells via Nrf2 translocation and activation of cytoprotective genes. Furthermore, in PA treated cells, CORM-A1 improved mitochondrial oxidative stress, membrane potential and rescued mitochondrial biogenesis thru upregulation of Drp1, TFAM, PGC-1α and NRF-1 genes. CORM-A1 treatment improved cellular status by lowering glycolytic respiration and maximizing OCR. Improvement in mitochondrial respiration and increment in ATP production in PA + CORM-A1 treated cells further corroborate our findings. In summary, our data demonstrate for the first time that CORM-A1 ameliorates tissue damage in steatotic liver via Nrf2 activation and improved mitochondrial function, thus, suggesting the anti-NASH potential of CORM-A1.


Assuntos
Boranos/administração & dosagem , Carbonatos/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Xarope de Milho Rico em Frutose/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Boranos/farmacologia , Carbonatos/farmacologia , Sobrevivência Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
Redox Biol ; 28: 101336, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590045

RESUMO

The retinal pigment epithelium (RPE) is consistently exposed to high levels of pro-oxidant and inflammatory stimuli. As such, under normal conditions the antioxidant machinery in the RPE cell is one of the most efficient in the entire body. However, antioxidant defense mechanisms are often impacted negatively by the process of aging and/or degenerative disease leaving RPE susceptible to damage which contributes to retinal dysfunction. Thus, understanding better the mechanisms governing antioxidant responses in RPE is critically important. Here, we evaluated the role of the redox sensitive microRNA miR-144 in regulation of antioxidant signaling in human and mouse RPE. In cultured human RPE, miR-144-3p and miR-144-5p expression was upregulated in response to pro-oxidant stimuli. Likewise, overexpression of miR-144-3p and -5p using targeted miR mimics was associated with reduced expression of Nrf2 and downstream antioxidant target genes (NQO1 and GCLC), reduced levels of glutathione and increased RPE cell death. Alternately, some protection was conferred against the above when miR-144-3p and miR-144-5p expression was suppressed using antagomirs. Expression analyses revealed a higher conservation of miR-144-3p expression across species and additionally, the presence of two potential Nrf2 binding sites in the 3p sequence compared to only one in the 5p sequence. Thus, we evaluated the impact of miR-144-3p expression in the retinas of mice in which a robust pro-oxidant environment was generated using sodium iodate (SI). Subretinal injection of miR-144-3p antagomir in SI mice preserved retinal integrity and function, decreased oxidative stress, limited apoptosis and enhanced antioxidant gene expression. Collectively, the present work establishes miR-144 as a potential target for preventing and treating degenerative retinal diseases in which oxidative stress is paramount and RPE is prominently affected (e.g., age-related macular degeneration and diabetic retinopathy).


Assuntos
Antioxidantes/metabolismo , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Modelos Biológicos , Interferência de RNA , Degeneração Retiniana/patologia , Transdução de Sinais/efeitos dos fármacos
18.
Antioxidants (Basel) ; 8(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443378

RESUMO

Stress-associated premature senescence (SAPS) is involved in retinal microvascular injury and diabetic retinopathy. We have investigated the role and mode of action of miR-34a in retinal endothelial cells senescence in response to glucidic stress. Human retinal microvascular endothelial cells (HuREC) were exposed to glucidic stress (high glucose (HG) = 25 mM d-glucose) and compared to cells exposed to normal glucose (NG = 5 mM) or the osmotic control l-glucose (LG = 25 mM). HG stimulation of HuREC increased the expression of miR-34a and induced cellular senescence. HG also increased the expression of p16ink4a and p21waf1, while decreasing the histone deacetylase SIRT1. These effects were associated with diminished mitochondrial function and loss of mitochondrial biogenesis factors (i.e., PGC-1α, NRF1, and TFAM). Transfection of the cells with miR-34a inhibitor (IB) halted HG-induced mitochondrial dysfunction and up-regulation of senescence-associated markers, whereas miR-34a mimic promoted cellular senescence and mitochondrial dysfunction. Moreover, HG lowered levels of the mitochondrial antioxidants TrxR2 and SOD2, an effect blunted by miR-34a IB, and promoted by miR-34a mimic. 3'-UTR (3'-untranslated region) reporter assay of both genes validated TrxR2 as a direct target of miR-34a, but not SOD2. Our results show that miR-34a is a key player of HG-induced SAPS in retinal endothelial cells via multiple pathways involved in mitochondrial function and biogenesis.

19.
Diabetes ; 68(5): 1014-1025, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30728185

RESUMO

We have investigated the contributing role of monosodium urate (MSU) to the pathological processes associated with the induction of diabetic retinopathy (DR). In human postmortem retinas and vitreous from donors with DR, we have found a significant increase in MSU levels that correlated with the presence of inflammatory markers and enhanced expression of xanthine oxidase. The same elevation in MSU levels was also detected in serum and vitreous of streptozotocin-induced diabetic rats (STZ-rats) analyzed at 8 weeks of hyperglycemia. Furthermore, treatments of STZ-rats with the hypouricemic drugs allopurinol (50 mg/kg) and benzbromarone (10 mg/kg) given every other day resulted in a significant decrease of retinal and plasma levels of inflammatory cytokines and adhesion factors, a marked reduction of hyperglycemia-induced retinal leukostasis, and restoration of retinal blood-barrier function. These results were associated with effects of the hypouricemic drugs on downregulating diabetes-induced levels of oxidative stress markers as well as expression of components of the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome such as NLRP3, Toll-like receptor 4, and interleukin-1ß. The outcomes of these studies support a contributing role of MSU in diabetes-induced retinal inflammation and suggest that asymptomatic hyperuricemia should be considered as a risk factor for DR induction and progression.


Assuntos
Retinopatia Diabética/imunologia , Retinopatia Diabética/patologia , Ácido Úrico/efeitos adversos , Ácido Úrico/metabolismo , Alopurinol/uso terapêutico , Animais , Benzobromarona/uso terapêutico , Diabetes Mellitus Experimental , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Humanos , Hiperuricemia/complicações , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/imunologia , Inflamação/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Fatores de Risco , Ácido Úrico/sangue , Corpo Vítreo/metabolismo , Xantina Oxidase/metabolismo
20.
Aging (Albany NY) ; 11(2): 386-400, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659164

RESUMO

GPR109A agonists have been used for the treatment of obesity however, the role of GPR109A in regulating aging-associated alterations in lipid metabolism is unknown. In this study we used Gpr109a-/- mice to investigate the effect of aging in the regulation of lipid accumulation. We observed that in mouse and human livers, in addition to Kupffer cells, GPR109A is expressed in hepatocytes. Over 12 months, compared to wild type (WT), Gpr109a-/- mice gained significantly more weight. Food intake and levels of serum lipids were similar among both groups. Compared to age-matched WT mice, 12-months old Gpr109a-/- mice had significantly increased liver weight, hepatic steatosis and serum markers of liver injury. The fatty liver phenotype in Gpr109a-/- mice was associated with increased hepatic expression of lipogenesis genes and decreased expression of lipolysis genes. Gpr109a-/- mice had significantly increased fat tissues, which was associated with significant increase in adipocyte diameter and surface area. Adipose tissue from Gpr109a-/- mice had increased expression of lipogenesis genes; however, expression of lipolytic genes was similar in both groups. Collectively, these results indicate that during aging, GPR109A modulates de novo lipid accumulation in liver and adipose tissue, and its dysregulation can lead to age-associated obesity and hepatic steatosis.


Assuntos
Envelhecimento , Fígado Gorduroso/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Gorduras/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos , Humanos , Lipogênese/genética , Lipogênese/fisiologia , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Aumento de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...