Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10804-10813, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517000

RESUMO

Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions. This work explores the impact of protonation on the photophysics of four naphthalene-based azo dyes. The pKa value of the dyes increases proportionally with decreasing Hammett parameter of p-phenyl substituents from 8.1 (R = -H, σ = 0) to 10.6 (R = -NMe2, σ = -0.83) in acetonitrile. Protonation of the dyes shuts down the steady-state photoisomerization observed in the unprotonated moieties. Fluorescence measurements reveal a lower quantum yield with more electron-donating p-phenyl substituents, with overall lower fluorescence quantum yields than the unprotonated dyes. Transient absorption spectroscopy reveals four excited-state lifetimes (<1 ps, ∼3 ps, ∼13 ps, and ∼200 ps) exhibiting faster excited-state dynamics than observed in the unprotonated forms (for 1-3: 0.7-1.5 ps, ∼3-4 ps, 20-40 ps, 20-300 min; for 4: 0.7 ps, 4.8 ps, 17.8 ps, 40 ps, 8 min). Time-dependent density functional theory (TDDFT) elucidates the reason for the loss of isomerization in the protonated dyes, revealing a significant change in the lowest excited state potential energy nature and landscape upon protonation. Protonation impedes relaxation along the typical rotational and inversion isomerization axes, locking the dyes into a trans-configuration that rapidly decays back to the ground state.

2.
Phys Chem Chem Phys ; 25(22): 15302-15313, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222191

RESUMO

In this work we untangle the ultrafast deactivation of high-energy excited states in four naphthalene-based azo dyes. Through systematic photophysical and computational study, we observed a structure-property relationship in which increasing the electron donating strength of the substituent leads to longer lived excited states in these organic dyes and faster thermal reversion from the cis to trans configuration. In particular, azo dyes 1-3 containing less electron donating substituents show three distinct excited-state lifetimes of ∼0.7-1.5 ps, ∼3-4 ps, and 20-40 ps whereas the most electron donating dimethyl amino substituted azo 4 shows excited-state lifetimes of 0.7 ps, 4.8 ps, 17.8 ps and 40 ps. While bulk photoisomerization of all four moieties is rapid, the cis to trans reversion lifetimes vary by a factor of 30 with τreversion decreasing from 276 min to 8 min with increasing electron donating strength of the substituent. In order to rationalize this change in photophysical behavior, we explored the excited-state potential energy surfaces and spin-orbit coupling constants for azo 1-4 through density functional theory. The increase in excited-state lifetime for 4 can be attributed to geometric and electronic degrees of freedom of the lowest energy singlet excited-state potential energy surface.

3.
Phys Chem Chem Phys ; 25(3): 2179-2189, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594369

RESUMO

Pd(II) biladienes have been developed over the last five years as non-aromatic oligotetrapyrrole complexes that support a rich triplet photochemistry. In this work, we have undertaken the first detailed photophysical interrogation of three homologous Pd(II) biladienes bearing different combinations of methyl- and phenyl-substituents on the frameworks' sp3-hybridized meso-carbon (i.e., the 10-position of the biladiene framework). These experiments have revealed unexpected excited-state dynamics that are dependent on the wavelength of light used to excite the biladiene. More specifically, transient absorption spectroscopy revealed that higher-energy excitation (λexc ∼ 350-500 nm) led to an additional lifetime (i.e., an extra photophysical process) compared to experiments carried out following excitation into the lowest-energy excited states (λexc = 550 nm). Each Pd(II) biladiene complex displayed an intersystem crossing lifetime on the order of tens of ps and a triplet lifetime of ∼20 µs, regardless of the excitation wavelength. However, when higher-energy light is used to excite the complexes, a new lifetime on the order of hundreds of ps is observed. The origin of the 'extra' lifetime observed upon higher energy excitation was revealed using density functional theory (DFT) and time-dependent DFT (TDDFT). These efforts demonstrated that excitation into higher-energy metal-mixed-charge-transfer excited states with high spin-orbit coupling to higher energy metal-mixed-charge-transfer triplet states leads to the additional excitation deactivation pathway. The results of this work demonstrate that Pd(II) biladienes support a unique triplet photochemistry that may be exploited for development of new photochemical schemes and applications.

4.
Dalton Trans ; 50(21): 7265-7276, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33954322

RESUMO

Chemical intuition and well-known design principles can typically be used to create ligand environments in transition metal complexes to deliberately tune reactivity for desired applications. However, intelligent ligand design does not always result in the expected outcomes. Herein we report the synthesis and characterization of a tricarbonyl rhenium (2,2'-bipyridine) 4-pyridylamidine, Re(4-Pam), complex with unexpected photophysical properties. Photoluminescence kinetics of Re(4-Pam) undergoes non-exponential decay, which can be deconvolved into two emission lifetimes. However, upon protonation of the amidine functionality of the 4-pyridylamidine to form Re(4-PamH), a single exponential decay is observed. To understand and rationalize these experimental observations, density functional theory (DFT) and time-dependent density functional theory (TDDFT) are employed. The symmetry or asymmetry of the protonated or deprotonated 4-pyridylamidine ligand, respectively, is the key factor in switching between one and two photoluminescence lifetimes. Specifically, rotation of the dihedral angle formed between the bipyridine and 4-Pam ligand leads to two rotamers of Re(4-Pam) with degenerate triplet- to ground-state transitions.

5.
Dalton Trans ; 48(23): 8488-8501, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31116199

RESUMO

Three bodipy-based (BDP = 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) donor-acceptor dyads were designed and synthesized, and their ground-state and photophysical properties were systematically characterized. The electronic coupling between the BDP chromophore and an electron-donating carbazole (Carb) moiety was tuned by attachment via the meso and the beta positions on the BDP core, and through the use of various chemical linkers (phenyl and alkynyl) to afford mesoBDP-Carb, mesoBDP-phen-Carb, and betaBDP-alk-Carb. meso-Substituted dyads were found to retain ground-state absorption features of the unsubstituted BDP. However, variation of the linkage between the donor and acceptor moieties modulated the photophysical behavior of excited-state deactivation by controlling the rate of photoinduced internal charge transfer (ICT). The beta-substituted dyad dramatically tuned (red shifted) the absorption spectrum, while retaining desired features of the BDP, specifically stability and high extinction coefficients, however the ICT kinetics were accelerated compared to the meso-substituted dyads. Density functional theory (DFT) and time-dependent DFT (TDDFT) were carried out on the six potential dyads formed between BDP and Carb (attachment using the beta and meso positions for all three connections: direct, phenyl and alkynyl) to support the experimental observations. DFT and TDDFT showed molecular orbital density spread across the HOMO level only when attachment occurred through the beta position of BDP. In the meso-substituted BDP-Carb dyads, the molecular orbitals resembled those of the unsubstituted BDP. This work reveals several possible synthetic paradigms to tune photophysical properties with directed synthetic modifications and provides a mechanistic understanding of the ground- and excited- state behavior in these small-molecule donor-acceptor dyads.

6.
Chem Commun (Camb) ; 55(42): 5874-5877, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31045183

RESUMO

Herein, we report a new donor-acceptor system for photo-induced proton-coupled electron transfer (PCET) that leverages an azo linkage as the proton-sensitive component and anthracene as a photo-trigger. Electrochemistry shows a change in the reduction potential with addition of acid. However, photochemistry is invariant to the absence or presence of acid. The anthracene and phenol/4-methoxyphenyl moieties of the azo dyes are highly conjugated, likely mitigating photo-induced charge transfer, despite sufficient driving force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...