Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(6): 3231-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26889718

RESUMO

People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course toxicokinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 nontarget chemicals. The same biologically based lumping approach can be used to simplify any complex mixture with tens, hundreds, or thousands of constituents.


Assuntos
Gasolina/toxicidade , Modelos Teóricos , Animais , Misturas Complexas/toxicidade , Feminino , Exposição por Inalação , Ratos Long-Evans , Toxicocinética
2.
Neurotoxicol Teratol ; 54: 78-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26721698

RESUMO

The use of gasolines blended with a range of ethanol concentrations may result in inhalation of vapors containing a variable combination of ethanol with other volatile gasoline constituents. The possibility of exposure and potential interactions between vapor constituents suggests the need to evaluate the possible risks of this complex mixture. Previously we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Here we report an evaluation using the same battery of sensory function testing in offspring of pregnant dams exposed during gestation to condensed vapors of gasoline (E0), gasoline blended with 15% ethanol (E15) or gasoline blended with 85% ethanol (E85). Pregnant Long-Evans rats were exposed to target concentrations 0, 3000, 6000, or 9000 ppm total hydrocarbon vapors for 6.5h/day over GD9 - GD20. Sensory evaluations of male offspring began as adults. The electrophysiological testing battery included tests of: peripheral nerve (compound action potentials, nerve conduction velocity [NCV]), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual functions. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, dark-adapted (scotopic) electroretinograms (ERGs), light-adapted (photopic) ERGs, and green flicker ERGs. The results included sporadic statistically significant effects, but the observations were not consistently concentration-related and appeared to be statistical Type 1 errors related to multiple dependent measures evaluated. The exposure concentrations were much higher than can be reasonably expected from typical exposures to the general population during refueling or other common exposure situations. Overall the results indicate that gestational exposure of male rats to ethanol/gasoline vapor combinations did not cause detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults.


Assuntos
Poluentes Atmosféricos/toxicidade , Potenciais Evocados/efeitos dos fármacos , Gasolina/toxicidade , Nervos Periféricos/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Administração por Inalação , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Eletrorretinografia , Feminino , Masculino , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Nervos Periféricos/fisiologia , Estimulação Luminosa , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Long-Evans
3.
Neurotoxicol Teratol ; 49: 19-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25724818

RESUMO

The primary alternative to petroleum-based fuels is ethanol, which may be blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol and the lack of information about the neurodevelopmental toxicity of ethanol-blended fuels prompted the present work. Pregnant Long-Evans rats were exposed for 6.5h/day on days 9-20 of gestation to clean air or vapors of gasoline containing no ethanol (E0) or gasoline blended with 15% ethanol (E15) or 85% ethanol (E85) at nominal concentrations of 3000, 6000, or 9000 ppm. Estimated maternal peak blood ethanol concentrations were less than 5mg/dL for all exposures. No overt toxicity in the dams was observed, although pregnant dams exposed to 9000 ppm of E0 or E85 gained more weight per gram of food consumed during the 12 days of exposure than did controls. Fuel vapors did not affect litter size or weight, or postnatal weight gain in the offspring. Tests of motor activity and a functional observational battery (FOB) administered to the offspring between post-natal day (PND) 27-29 and PND 56-63 revealed an increase in vertical activity counts in the 3000- and 9000-ppm groups in the E85 experiment on PND 63 and a few small changes in sensorimotor responses in the FOB that were not monotonically related to exposure concentration in any experiment. Neither cell-mediated nor humoral immunity were affected in a concentration-related manner by exposure to any of the vapors in 6-week-old male or female offspring. Systematic concentration-related differences in systolic blood pressure were not observed in rats tested at 3 and 6 months of age in any experiment. No systematic differences were observed in serum glucose or glycated hemoglobin A1c (a marker of long-term glucose homeostasis). These observations suggest a LOEL of 3000 ppm of E85 for vertical activity, LOELs of 9000 ppm of E0 and E85 for maternal food consumption, and NOELs of 9000 ppm for the other endpoints reported here. The ethanol content of the vapors did not consistently alter the pattern of behavioral, immunological, or physiological responses to the fuel vapors. The concentrations of the vapors used here exceed by 4-6 orders of magnitude typical exposure levels encountered by the public.


Assuntos
Comportamento Animal/efeitos dos fármacos , Etanol/toxicidade , Gasolina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Administração por Inalação , Animais , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Etanol/administração & dosagem , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/imunologia , Ratos , Ratos Long-Evans
4.
Toxicol Sci ; 143(2): 512-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410581

RESUMO

To provide useful alternatives to in vivo animal studies, in vitro assays for dose-response assessments of xenobiotic chemicals must use concentrations in media and target tissues that are within biologically-plausible limits. Determining these concentrations is a complex matter, which can be facilitated by applying physiologically-based pharmacokinetic (PBPK) models in an in vitro to in vivo extrapolation (IVIVE) paradigm. We used ethanol (EtOH), a ubiquitous chemical with defined metrics for in vivo and in vitro embryotoxicity, as a model chemical to evaluate this paradigm. A published series of life-stage PBPK models for rats was extended to mice, yielding simulations that adequately predicted in vivo blood EtOH concentrations (BECs) from oral, intraperitoneal, and intravenous routes in nonpregnant and pregnant adult mice. The models were then extrapolated to nonpregnant and pregnant humans, replicating BEC data within a factor of two. The rodent models were then used to conduct IVIVEs for rodent and whole-embryo culture embryotoxicity data (neural tube closure defects, morphological changes). A second IVIVE was conducted for exposure scenarios in pregnant women during critical windows of susceptibility for developmental toxicity, such as the first 6-to-8 weeks (prerecognition period) or mid-to-late pregnancy period, when EtOH consumption is associated with fetal alcohol spectrum disorders. Incorporation of data from human embryonic stem cell studies led to a model-supported linkage of in vitro concentrations with plausible exposure ranges for pregnant women. This effort demonstrates benefits and challenges associated with use of multispecies PBPK models to estimate in vivo tissue concentrations associated with in vitro embryotoxicity studies.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Etanol/farmacocinética , Etanol/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Exposição Materna , Modelos Biológicos , Simulação por Computador , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Etanol/administração & dosagem , Etanol/sangue , Feminino , Idade Gestacional , Humanos , Valor Preditivo dos Testes , Gravidez , Especificidade da Espécie , Distribuição Tecidual
5.
Neurotoxicol Teratol ; 45: 59-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25092052

RESUMO

Recent legislation has encouraged replacing petroleum-based fuels with renewable alternatives including ethanol, which is typically blended with gasoline in the United States at concentrations up to 10%, with allowances for concentrations up to 85% for some vehicles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol, and the lack of information about its toxicity by inhalation prompted the present work on its potential developmental effects in a rat model. Pregnant Long-Evans rats were exposed for 6.5h/day on days 9-20 of gestation to clean air or ethanol vapor at concentrations of 5000, 10,000, or 21,000 ppm, which resulted in estimated peak blood ethanol concentrations (BECs) of 2.3, 6.7, and 192 mg/dL, respectively. No overt toxicity in the dams was observed. Ethanol did not affect litter size or weight, or postnatal weight gain in the pups. Motor activity was normal in offspring through postnatal day (PND) 29. On PND 62, the 5000 and 21,000 ppm groups were more active than controls. On PND 29 and 62, offspring were tested with a functional observational battery, which revealed small changes in the neuromuscular and sensorimotor domains that were not systematically related to dose. Cell-mediated and humoral immunity were not affected by ethanol exposure in 6-week-old offspring. Systolic blood pressure was increased by 10,000 ppm ethanol in males at PND 90 but not at PND 180. No differences in lipoprotein profile, liver function, or kidney function were observed. In summary, prenatal exposure to inhaled ethanol caused some mild changes in physiological and behavioral development in offspring that were not clearly related to inhaled concentration or BEC, and did not produce detectable changes in immune function. This low toxicity of inhaled ethanol may result from the slow rise in BEC by the inhalation route.


Assuntos
Etanol/toxicidade , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Administração por Inalação , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Etanol/administração & dosagem , Feminino , Força da Mão , Masculino , Exposição Materna , Atividade Motora/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Ratos , Ratos Long-Evans
6.
Inhal Toxicol ; 26(10): 598-619, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144475

RESUMO

Ethanol (EtOH) exposure induces a variety of concentration-dependent neurological and developmental effects in the rat. Physiologically-based pharmacokinetic (PBPK) models have been used to predict the inhalation exposure concentrations necessary to produce blood EtOH concentrations (BEC) in the range associated with these effects. Previous laboratory reports often lacked sufficient detail to adequately simulate reported exposure scenarios associated with BECs in this range, or lacked data on the time-course of EtOH in target tissues (e.g. brain, liver, eye, fetus). To address these data gaps, inhalation studies were performed at 5000, 10 000, and 21 000 ppm (6 h/d) in non-pregnant female Long-Evans (LE) rats and at 21 000 ppm (6.33 h/d) for 12 d of gestation in pregnant LE rats to evaluate our previously published PBPK models at toxicologically-relevant blood and tissue concentrations. Additionally, nose-only and whole-body plethysmography studies were conducted to refine model descriptions of respiration and uptake within the respiratory tract. The resulting time-course and plethysmography data from these in vivo studies were compared to simulations from our previously published models, after which the models were recalibrated to improve descriptions of tissue dosimetry by accounting for dose-dependencies in pharmacokinetic behavior. Simulations using the recalibrated models reproduced these data from non-pregnant, pregnant, and fetal rats to within a factor of 2 or better across datasets, resulting in a suite of model structures suitable for simulation of a broad range of EtOH exposure scenarios.


Assuntos
Etanol/farmacocinética , Exposição por Inalação , Exposição Materna , Troca Materno-Fetal/fisiologia , Modelos Biológicos , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Testes Respiratórios , Relação Dose-Resposta a Droga , Etanol/sangue , Etanol/toxicidade , Olho/embriologia , Olho/metabolismo , Feminino , Sangue Fetal/metabolismo , Idade Gestacional , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Cinética , Fígado/embriologia , Fígado/metabolismo , Exposição Materna/efeitos adversos , Troca Materno-Fetal/efeitos dos fármacos , Pletismografia , Gravidez , Ratos Long-Evans
7.
Neurotoxicol Teratol ; 43: 1-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24607749

RESUMO

Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults.


Assuntos
Ondas Encefálicas/efeitos dos fármacos , Encéfalo , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Condução Nervosa/efeitos dos fármacos , Nervos Periféricos , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Ondas Encefálicas/fisiologia , Relação Dose-Resposta a Droga , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Potenciais Evocados Visuais/efeitos dos fármacos , Feminino , Masculino , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/embriologia , Nervos Periféricos/crescimento & desenvolvimento , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos
8.
Inhal Toxicol ; 24(11): 698-722, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22954395

RESUMO

Biofuel blends of 10% ethanol (EtOH) and gasoline are common in the USA, and higher EtOH concentrations are being considered (15-85%). Currently, no physiologically-based pharmacokinetic (PBPK) models are available to describe the kinetics of EtOH-based biofuels. PBPK models were developed to describe life-stage differences in the kinetics of EtOH alone in adult, pregnant, and neonatal rats for inhalation, oral, and intravenous routes of exposure, using data available in the open literature. Whereas ample data exist from gavage and intravenous routes of exposure, kinetic data from inhalation exposures are limited, particularly at concentrations producing blood and target tissue concentrations associated with developmental neurotoxicity. Compared to available data, the three models reported in this paper accurately predicted the kinetics of EtOH, including the absorption, peak concentration, and clearance across multiple datasets. In general, model predictions for adult and pregnant animals matched inhalation and intravenous datasets better than gavage data. The adult model was initially better able to predict the time-course of blood concentrations than was the neonatal model. However, after accounting for age-related changes in gastric uptake using the calibrated neonate model, simulations consistently reproduced the early kinetic behavior in blood. This work provides comprehensive multi-route life-stage models of EtOH pharmacokinetics and represents a first step in development of models for use with gasoline-EtOH blends, with additional potential applicability in investigation of the pharmacokinetics of EtOH abuse, addiction, and toxicity.


Assuntos
Etanol/farmacocinética , Modelos Biológicos , Animais , Animais Recém-Nascidos , Biocombustíveis , Simulação por Computador , Vias de Administração de Medicamentos , Etanol/administração & dosagem , Etanol/metabolismo , Feminino , Gravidez , Ratos
9.
Inhal Toxicol ; 24(1): 1-26, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22188408

RESUMO

The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.


Assuntos
Poluentes Ocupacionais do Ar/farmacocinética , Hidrocarbonetos/farmacocinética , Modelos Biológicos , Tecido Adiposo/metabolismo , Administração por Inalação , Poluentes Ocupacionais do Ar/sangue , Animais , Encéfalo/metabolismo , Hidrocarbonetos/sangue , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344
10.
Inhal Toxicol ; 23(1): 11-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21222558

RESUMO

Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.


Assuntos
Alcanos/toxicidade , Hidrocarbonetos/toxicidade , Exposição por Inalação/efeitos adversos , Cetonas/sangue , Cetonas/urina , Alcanos/metabolismo , Animais , Biomarcadores , Fezes , Hidrocarbonetos/metabolismo , Inalação , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344
11.
Inhal Toxicol ; 22(5): 394-401, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20218763

RESUMO

Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.


Assuntos
Aerossóis/química , Gases/química , Hidrocarbonetos/química , Querosene , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular
12.
Inhal Toxicol ; 22(5): 382-93, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20109056

RESUMO

A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.


Assuntos
Aerossóis/análise , Câmaras de Exposição Atmosférica , Hidrocarbonetos/análise , Exposição por Inalação , Querosene/análise , Animais , Cromatografia Gasosa-Espectrometria de Massas , Nebulizadores e Vaporizadores , Tamanho da Partícula , Ratos
13.
Arch Environ Occup Health ; 60(6): 314-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17447576

RESUMO

School officials and community citizens in Georgia were concerned about the airborne trichloroethylene (TCE) that was emanating from a nearby industrial facility that used TCE as a degreaser. No measurements of airborne TCE in the community were taken by public health officials or the industrial facility. The regulation of release of TCE from this facility was governed, in part, by mathematical model predictions of dispersion into the community. In support of community health concerns, the authors collected a limited number of outdoor and indoor air samples in the affected community, including those from a school, a small business, and three homes, for the analysis of TCE. The mean outdoor air concentration of TCE for all affected sites was 0.96 microg/m3 with a peak TCE concentration of 4.59 microg/m3. The mean indoor air concentration of TCE for all affected sites was 1.40 microg/m3 with a peak TCE concentration of 4.66 microg/m3. All collected air samples were below the guideline level of 5 microg TCE/m3 of air as used by the state of Georgia in the United States, but sample levels were greater than those found in large population studies of TCE in indoor and outdoor air in Minnesota in the United States and in Ottawa in Canada. Additional air samples are needed to better characterize the exposure of the community to TCE.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Tricloroetileno/análise , Georgia , Humanos , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...