Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631283

RESUMO

BACKGROUND: Drug incompatibility is defined as a physical-chemical reaction between two or more injectable drugs and that results mainly in precipitation or insolubility. Several strategies for reducing incompatibilities have been implemented empirically in intensive care units. However, these strategies have never been compared directly (and particularly in terms of the particulate load and drug mass flow rate) under standardized conditions. The objective of the present in vitro study was to evaluate the impact of various strategies for preventing incompatibility between simultaneously infused vancomycin and piperacillin/tazobactam. METHODS: An in-line filter, a dilute vancomycin solution (5 mg/mL), and an alternative saline administration line were evaluated separately. The infusion line outlet was connected to a dynamic particle counter. The antibiotic concentration was measured in an HPLC-UV assay. RESULT: The use of an in-line filter and an alternative saline administration route did not significantly reduce the particulate load caused by vancomycin-piperacillin/tazobactam incompatibility. Dilution of the vancomycin solution was associated with a significantly lower particulate load and maintenance of the vancomycin mass flow rate. DISCUSSION: It is important to systematically compare the efficacy of strategies for preventing drug incompatibility. The use of diluted vancomycin solution gave the best results in the case of vancomycin-piperacillin/tazobactam incompatibility.

2.
Int J Pharm ; 627: 122220, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36162606

RESUMO

Vancomycin and piperacillin/tazobactam are known to be incompatible. The objectives of the present study were to evaluate the impact of their simultaneous infusion on mass flow rates and particulate load and identify preventive strategies. We assessed both static conditions and a reproduction of an infusion line used in a hospital's critical care unit. A high-performance liquid chromatography/UV diode array system and static and dynamic laser diffraction particle counters were used. The mass flow rates were primarily influenced by the choice of the infusion device and the presence of simulated fluid volume support. Drug incompatibility also appeared to affect vancomycin's mass flow rate, and the dynamic particulate load increased during flow rate changes - especially in the infusion set with a large common volume line and no concomitant simulated fluid volume support. Only discontinuation of the piperacillin/tazobactam infusion was associated with a higher particulate load in the infusion set with a large common volume line and no concomitant simulated fluid volume support. A low common volume line and the use of simulated fluid volume support were associated with smaller fluctuations in the mass flow rate. The clinical risk associated with a higher particulate load must now be assessed.


Assuntos
Antibacterianos , Vancomicina , Combinação Piperacilina e Tazobactam , Infusões Parenterais , Incompatibilidade de Medicamentos , Piperacilina , Ácido Penicilânico , Infusões Intravenosas
3.
Eur J Hosp Pharm ; 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882533

RESUMO

Errors in injectable preparations with high-risk drugs can be fatal. This study aimed to identify the factors influencing the accuracy of high-risk injectable drug concentrations in appliances used for intensive care unit preparation practices. Norepinephrine (NE) was chosen as an example of a high-risk medication drug. The concentration (0.2 and 0.5 mg/mL), the diluent (sodium chloride 0.9% and 5% dextrose), and the container type (prefilled- and empty-infusion bag and syringe) were tested as potential variability factors. An ultraviolet spectrophotometric method was used for NE dosage. 108 NE solutions were prepared by five individuals (pharmacists or laboratory technicians) with clinical experience as well as experience in the aseptic preparation of solutions. The container type was found to be the only factor influencing the accuracy of NE concentration. NE solutions in syringes proved to be the most accurate while preparations in prefilled bags tended to underdose NE.

4.
Pharmaceutics ; 13(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800228

RESUMO

BACKGROUND: In neonatal intensive care units (NICUs), the simultaneous administration of drugs requires complex infusion methods. Such practices can increase the risk of drug incompatibilities resulting in the formation of a particulate load with possible clinical consequences. METHODS: This paper evaluates strategies to reduce the particulate load of a protocol commonly used in NICUs with a potential medical incompatibility (vancomycin/cefepime combination). The protocol was reproduced in the laboratory and the infusion line directly connected to a dynamic particle counter to evaluate the particulate matter administered during infusion. A spectrophotometry UV assay of cefepime evaluated the impact of filters on the concentration of cefepime administered. RESULTS: A significant difference was observed between the two infusion line configurations used in the NICU, with higher particulate load for cefepime infused via the emergency route. There was no change in particulate load in the absence of vancomycin. A filter on the emergency route significantly reduced this load without decreasing the cefepime concentration infused. Preparation of cefepime seemed to be a critical issue in the protocol as the solution initially contained a high level of particles. CONCLUSION: This study demonstrated the impact of a reconstitution method, drug dilution and choice of infusion line configuration on particulate load.

5.
Eur J Clin Pharmacol ; 77(9): 1309-1321, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33768303

RESUMO

PURPOSE: Drug protocols in intensive care units may require the concomitant administration of many drugs as patients' venous accesses are often limited. A major challenge for clinicians is to limit the risk of simultaneously infusing incompatible drugs. Incompatibilities can lead to the formation of particles and inactivation of drugs, whose consequences on the body have already been indicated. Our objective was to assess current strategies to counter the risk of incompatible infusions and control the resulting clinical consequences. METHODS: This review was independently conducted by three investigators in respect of the PRISMA statement. Three online databases were consulted. Full-text articles, notes, or letters written in English or French, published or in press between the 1990s and the end of February 2020, with clinical study design, were eligible. Parameters of interest were mainly number and size of particles, and a number of observed/avoided incompatibilities. RESULTS: All in all, 382 articles were screened, 17 meeting all the acceptance criteria. The strategies outlined and assessed were filtration, the use of multi-lumen devices, the purging of infusion lines, incompatibility tables and databases, and the use of standard operating procedures. CONCLUSION: Although many strategies have been developed in recent years to address drug incompatibility risks, clinical data is still lacking. All studies with in vitro design were excluded although some current innovative strategies, like niosomes, should be considered and studied by means of clinical data in the future.


Assuntos
Incompatibilidade de Medicamentos , Infusões Intravenosas/métodos , Unidades de Terapia Intensiva , Protocolos Clínicos , Filtração , Humanos , Infusões Intravenosas/instrumentação
7.
Intensive Care Med Exp ; 6(1): 38, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30306347

RESUMO

BACKGROUND: In critically ill patients, drug incompatibilities frequently occur because of the number of drugs to be administered through a limited number of infusion lines. These are among the main causes of particulate contamination. However, little data is available to quantify particle exposure during simultaneous IV-drug infusion. The objective of this study was to evaluate the particulate matter potentially administered to critically ill patients. METHODS: The particulate matter (between 1 µm and 30 mm) of infused therapies used in ICUs for patients suffering from either septic shock or acute respiratory distress syndrome was measured in vitro over 6 h using a dynamic image analysis device, so that both overall particulate contamination and particle sizes could be determined. Data is presented according to the recommendations of the European Pharmacopoeia (≥ 10 and 25 µm). RESULTS: For the six experimental procedures (continuous infusion of norepinephrine, midazolam, sufentanil, heparin, 5% glucose, binary parenteral nutrition and discontinuous administrations of omeprazole, piperacillin/tazobactam and fluconazole), the overall number of particles over the 6-h infusion period was 8256 [5013; 15,044]. The collected values for the number of particles ≥ 10 and 25 µm were 281 [118; 526] and 19 [7; 96] respectively. Our results showed that discontinuous administrations of drugs led to disturbances in particulate contamination. CONCLUSIONS: This work indicates the amount of particulate matter potentially administered to critically ill adult patients. Particulate contamination appears lower than previous measurements performed during multidrug IV therapies in children.

8.
EMBO Mol Med ; 9(11): 1471-1481, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28947679

RESUMO

Lactase (LCT) deficiency affects approximately 75% of the world's adult population and may lead to lactose malabsorption and intolerance. Currently, the regulation of LCT gene expression remains poorly known. Peroxisome proliferator activator receptorγ (PPARγ) is a key player in carbohydrate metabolism. While the intestine is essential for carbohydrate digestion and absorption, the role of PPARγ in enterocyte metabolic functions has been poorly investigated. This study aims at characterizing PPARγ target genes involved in intestinal metabolic functions. In microarray analysis, the LCT gene was the most upregulated by PPARγ agonists in Caco-2 cells. We confirmed that PPARγ agonists were able to increase the expression and activity of LCT both in vitro and in vivo in the proximal small bowel of rodents. The functional response element activated by PPARγ was identified in the promoter of the human LCT gene. PPARγ modulation was able to improve symptoms induced by lactose-enriched diet in weaned rats. Our results demonstrate that PPARγ regulates LCT expression, and suggest that modulating intestinal PPARγ activity might constitute a new therapeutic strategy for lactose malabsorption.


Assuntos
Intestino Delgado/metabolismo , Lactase/metabolismo , PPAR gama/metabolismo , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Animais , Células CACO-2 , Imunoprecipitação da Cromatina , Dieta , Humanos , Lactase/genética , Lactose/metabolismo , Intolerância à Lactose/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , PPAR gama/agonistas , PPAR gama/genética , Fenilpropionatos/farmacologia , Fenilpropionatos/uso terapêutico , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
9.
Front Immunol ; 8: 1052, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928735

RESUMO

The etiology of inflammatory bowel diseases remains largely unknown. We previously demonstrated that the expression of the peroxisome proliferator activated receptor-gamma (PPARγ) is downregulated in colonic epithelial cells of patients with ulcerative colitis (UC). PPARγ is a nuclear receptor that modulates inflammation. We hypothesized that its deficiency may play a role in the loss of intestinal homeostasis through the control of immunomodulatory factors. We found that thymic stromal lymphopoietin (TSLP), an epithelial cytokine with pleiotropic functions, is regulated by PPARγ. While this cytokine possesses two isoforms, only the short form (sfTSLP) was regulated by PPARγ. sfTSLP mRNA expression was decreased both in PPARγ knock-down Caco2 cells and cells treated with PPARγ antagonist, whereas PPARγ agonists induced the expression of sfTSLP in Caco2 and T-84 cells. The response element activated by PPARγ was identified in the promoter of the sfTSLP gene by chromatin immunoprecipitation and gene reporter assays. The expression of sfTSLP was significantly decreased in the colonic mucosa of UC patients compared to controls and was correlated with PPARγ expression. Our results identified sfTSLP as a new PPARγ-target gene and support the hypothesis that, in UC, PPARγ deficiency in colonic mucosa could play a role in the loss of intestinal tolerance through an impaired sfTSLP expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...