Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(8): e12500, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39183543

RESUMO

The benefits of regular physical exercise on cancer prevention, as well as reducing fatigue, treatment side effects and recurrence, and improving quality of life and overall survival of cancer patients, are increasingly recognised. Initial studies showed that the concentration of extracellular vesicles (EVs) increases during physical activity and that EVs carry biologically active cargo. These EVs are released by blood cells, skeletal muscle and other organs involved in exercise, thus suggesting that EVs may mediate tissue crosstalk during exercise. This possibility triggered a great interest in the study of the roles of EVs in systemic adaptation to exercise and in their potential applications in the prevention and treatment of various diseases, including cancer. This review presents studies exploring the concentration and molecular cargo of EVs released during exercise. Furthermore, we discuss putative stimuli that may trigger EV release from various cell types, the biological functions and the impact of exercise-induced EVs on cancer development and progression. Understanding the interplay between exercise, EVs, and cancer biology may offer insights into novel therapeutic strategies and preventive measures for cancer.


Assuntos
Exercício Físico , Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Neoplasias/terapia , Exercício Físico/fisiologia , Animais , Músculo Esquelético/metabolismo
2.
Bioconjug Chem ; 34(12): 2275-2292, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37882455

RESUMO

Oriented and covalent immobilization of proteins on magnetic nanoparticles (MNPs) is particularly challenging as it requires both the functionality of the protein and the colloidal stability of the MNPs to be preserved. Here, we describe a simple, straightforward, and efficient strategy for MNP functionalization with proteins using metal affinity binding. Our method involves a single-step process where MNPs are functionalized using a preformed, ready-to-use nitrilotriacetic acid-divalent metal cation (NTA-M2+) complex and polyethylene glycol (PEG) molecules. As a proof-of-concept, we demonstrate the oriented immobilization of a recombinant cadherin fragment engineered with a hexahistidine tag (6His-tag) onto the MNPs. Our developed methodology is simple and direct, enabling the oriented bioconjugation of His-tagged cadherins to MNPs while preserving protein functionality and the colloidal stability of the MNPs, and could be extended to other proteins expressing a polyhistidine tag. When compared to the traditional method where NTA is first conjugated to the MNPs and afterward free metal ions are added to form the complex, this novel strategy results in a higher functionalization efficiency while avoiding MNP aggregation. Additionally, our method allows for covalent bonding of the cadherin fragments to the MNP surface while preserving functionality, making it highly versatile. Finally, our strategy not only ensures the correct orientation of the protein fragments on the MNPs but also allows for the precise control of their density. This feature enables the selective targeting of E-cadherin-expressing cells only when MNPs are decorated with a high density of cadherin fragments.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Indicadores e Reagentes , Quelantes , Ácido Nitrilotriacético/química , Caderinas/química , Metais
3.
J Mater Chem B ; 8(31): 6710-6738, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32627783

RESUMO

Tumor-derived extracellular vesicles have emerged as an alternative source of cancer biomarkers in liquid biopsies. Despite their clinical potential, traditional methods for isolation and analysis have hampered their translation into the clinic. The use of nanomaterial-based biosensors can speed up the development of analytical methods for quantifying extracellular vesicles in a specific, highly reproducible, robust, fast and inexpensive way. Here we review the utility of extracellular vesicles as a novel type of liquid biopsies and the recent advances in nanoparticle-based biosensors for their analysis. We aim to emphasise the limitations and challenges that hinder extracellular vesicle analysis using these biosensors and point out potential solutions.


Assuntos
Técnicas Biossensoriais/métodos , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , Nanopartículas , Animais , Humanos
4.
Nanomaterials (Basel) ; 10(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947630

RESUMO

Uniform Nd3+-doped LuVO4 nanophosphors have been synthesized for the first time in literature by using a poliol-based method at 120 °C from Nd3+ and vanadate precursors. After optimizing the Nd doping level, these phosphors present intense luminescence in the near-infrared biological windows. The X-ray attenuation capacity of the optimum nanophosphor has been found to be higher than that of a commercial X-ray computed tomography contrast agent. After surface coating with polyacrylic acid, such nanoparticles present high colloidal stability in physiological pH medium and high cell viability. Because of these properties, the developed Nd3+-doped LuVO4 nanoparticles have potential applications as a bimodal probe for NIR luminescent bioimaging and X-ray computed tomography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA