Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(5): 2945-2955, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38669114

RESUMO

Metal-coordination bonds, a highly tunable class of dynamic noncovalent interactions, are pivotal to the function of a variety of protein-based natural materials and have emerged as binding motifs to produce strong, tough, and self-healing bioinspired materials. While natural proteins use clusters of metal-coordination bonds, synthetic materials frequently employ individual bonds, resulting in mechanically weak materials. To overcome this current limitation, we rationally designed a series of elastin-like polypeptide templates with the capability of forming an increasing number of intermolecular histidine-Ni2+ metal-coordination bonds. Using single-molecule force spectroscopy and steered molecular dynamics simulations, we show that templates with three histidine residues exhibit heterogeneous rupture pathways, including the simultaneous rupture of at least two bonds with more-than-additive rupture forces. The methodology and insights developed improve our understanding of the molecular interactions that stabilize metal-coordinated proteins and provide a general route for the design of new strong, metal-coordinated materials with a broad spectrum of dissipative time scales.


Assuntos
Histidina , Simulação de Dinâmica Molecular , Níquel , Histidina/química , Níquel/química , Elastina/química , Proteínas/química , Peptídeos/química
2.
ACS Biomater Sci Eng ; 9(7): 4101-4107, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37288994

RESUMO

Model verification is a critical aspect of scientific accountability, transparency, and learning. Here, we demonstrate an application of a model verification approach for a molecular dynamics (MD) simulation, where the interactions between silica and silk protein were studied experimentally toward understanding biomineralization. Following the ten rules for credible modeling and simulation of biosciences as developed in Erdemir et al., the authors of the original paper collaborated with an external modeling group to verify the key findings of their original simulation model and to document this verification approach. The process resulted in successful replication of the key findings of the original model. Beyond verification, study of the model from a new perspective generated new insight into the basic assumptions. We discuss key learnings for how model validation processes can be improved more generally, specifically through improved documentation methods. We anticipate that this application of our protocol for model verification can be further replicated and improved to verify and validate other simulations.


Assuntos
Biomineralização , Reprodutibilidade dos Testes
3.
Adv Sci (Weinh) ; 10(12): e2205473, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36825685

RESUMO

The oral cavity contains distinct microenvironments that serve as oral barriers, such as the non-shedding surface of the teeth (e.g., enamel), the epithelial mucosa and gingival tissue (attached gingiva) where microbial communities coexist. The interactions and balances between these communities are responsible for oral tissue homeostasis or dysbiosis, that ultimately dictate health or disease. Disruption of this equilibrium can lead to chronic inflammation and permanent tissue damage in the case of chronic periodontitis. There are currently no experimental tissue models able to mimic the structural, physical, and metabolic conditions present in the human oral gingival tissue to support the long-term investigation of host-pathogens imbalances. Herein, the authors report an in vitro 3D anatomical gingival tissue model, fabricated from silk biopolymer by casting a replica mold of an adult human mandibular gingiva to recreate a tooth-gum unit. The model is based on human primary cultures that recapitulate physiological tissue organization, as well as a native oxygen gradient within the gingival pocket to support human subgingival plaque microbiome with a physiologically relevant level of microbial diversity up to 24 h. The modulation of inflammatory markers in the presence of oral microbiome indicates the humanized functional response of this model and establishes a new set of tools to investigate host-pathogen imbalances in gingivitis and periodontal diseases.


Assuntos
Gengivite , Microbiota , Doenças Periodontais , Adulto , Humanos , Gengiva , Bolsa Gengival
4.
Nanoscale ; 14(30): 10929-10939, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35852800

RESUMO

Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo. Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the ß-sheets in silk, which are a key load-bearing element of silk. The ß-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of ß-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration.


Assuntos
Durapatita , Seda , Materiais Biocompatíveis/química , Regeneração Óssea , Durapatita/química , Seda/química , Vapor
5.
Macromol Biosci ; 22(8): e2200122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35634798

RESUMO

Genetically engineered silk-elastin-like-proteins (SELPs) synthesized with the combination of silk and elastin domains are bioengineered to also contain a graphene oxide (GO) binding domain. The conductivity and mechanical stability of graphene, combined with SELP-specific graphene interfaces are pursued as dynamic hybrid materials, toward biomaterial-based electronic switches. The resulting bioengineered proteins with added GO demonstrate cytocompatibility and conductivity that could be modulated by changing hydrogel size in response to temperature due to the SELP chemistry. Upon increased temperature, the gels coalesce and contract, providing sufficient condensed spacing to facilitate conductivity via the graphene domains, a feature that is lost at lower temperatures with the more expanded hydrogels. This thermally induced contraction-expansion is reversible and cyclable, providing an "on-off" conductive switch driven by temperature-driven hydrogel shape-change.


Assuntos
Grafite , Seda , Materiais Biocompatíveis/química , Elastina/química , Eletrônica , Hidrogéis/química , Óxidos , Seda/química
6.
ACS Biomater Sci Eng ; 8(3): 1156-1165, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35129957

RESUMO

Structural proteins are the basis of many biomaterials and key construction and functional components of all life. Further, it is well-known that the diversity of proteins' function relies on their local structures derived from their primary amino acid sequences. Here, we report a deep learning model to predict the secondary structure content of proteins directly from primary sequences, with high computational efficiency. Understanding the secondary structure content of proteins is crucial to designing proteins with targeted material functions, especially mechanical properties. Using convolutional and recurrent architectures and natural language models, our deep learning model predicts the content of two essential types of secondary structures, the α-helix and the ß-sheet. The training data are collected from the Protein Data Bank and contain many existing protein geometries. We find that our model can learn the hidden features as patterns of input sequences that can then be directly related to secondary structure content. The α-helix and ß-sheet content predictions show excellent agreement with training data and newly deposited protein structures that were recently identified and that were not included in the original training set. We further demonstrate the features of the model by a search for de novo protein sequences that optimize max/min α-helix/ß-sheet content and compare the predictions with folded models of these sequences based on AlphaFold2. Excellent agreement is found, underscoring that our model has predictive potential for rapidly designing proteins with specific secondary structures and could be widely applied to biomedical industries, including protein biomaterial designs and regenerative medicine applications.


Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/genética
7.
Biomaterials ; 276: 120995, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256231

RESUMO

Our goal was to generate functionalized 3D-printed scaffolds for bone regeneration using silk-hydroxyapatite bone cements and osteoinductive, proangiogenic and neurotrophic growth factors or morphogens for accelerated bone formation. 3D printing was utilized to generate macroporous scaffolds with controlled geometries and architectures that promote osseointegration. We build on the knowledge that the osteoinductive factor Bone Morphogenetic Protein-2 (BMP2) can also positively impact vascularization, Vascular Endothelial Growth Factor (VEGF) can impact osteoblastic differentiation, and that Neural Growth Factor (NGF)-mediated signaling can influence bone regeneration. We assessed functions on the 3D printed construct via the osteogenic differentiation of human mesenchymal stem cells; migration and proliferation of human umbilical vein endothelial cells; and proliferation of human induced neural stem cells. The scaffolds provided mechanical properties suitable for bone and the materials were cytocompatible, osteoconductive and maintained the activity of the morphogens and cytokines. Synergistic outcomes between BMP-2, VEGF and NGF in terms of osteoblastic differentiation in vitro were identified, based on the upregulation of genes associated with osteoblastic differentiation (Runt-related transcription factor-2, Osteopontin, Bone Sialoprotein). Additional studies will be required to assess these scaffold designs in vivo. These results are expected to have a strong impact in bone regeneration in dental, oral and maxillofacial surgery.


Assuntos
Durapatita , Osteogênese , Regeneração Óssea , Células Endoteliais da Veia Umbilical Humana , Humanos , Impressão Tridimensional , Seda , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular
8.
Acta Biomater ; 120: 203-212, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160114

RESUMO

Understanding the properties and behavior of biomineralized protein-based materials at the organic-inorganic interface is critical to optimize the performance of such materials for biomedical applications. To that end, this work investigates biomineralized protein-based films with applications for bone regeneration. These films were generated using a chimeric protein fusing the consensus repeat derived from the spider Nephila clavipes major ampullate dragline silk with the silica-promoting peptide R5 derived from the Cylindrotheca fusiformis silaffin gene. The effect of pH on the size of silica nanoparticles during their biomineralization on silk films was investigated, as well as the potential impact of nanoparticle size on the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts. To that end, induction of the integrin αV subunit and the osteogenic markers Runx2 transcription factor and Bone Sialoprotein (BSP) was followed. The results indicated that pH values of 7-8 during biomineralization maximized the coverage of the film surface by silica nanoparticles yielding nanoparticles ranging 200-500 nm and showing enhanced osteoinduction in gene expression analysis. Lower (3-5) or high (10) pH values led to lower biomineralization and poor coverage of the protein surfaces, showing reduced osteoinduction. Molecular dynamics simulations confirmed the activation of the integrin αVß3 in contact with silica nanoparticles, correlating with the experimental data on the induction of osteogenic markers. This work sheds light on the optimal conditions for the development of fit-for-purpose biomaterial designs for bone regeneration, while the agreement between experimental and computational results shows the potential of computational methods to predict the expression of osteogenic markers for biomaterials. STATEMENT OF SIGNIFICANCE: The ability of biomineralized materials to induce hMSCs differentiation for bone tissue regeneration applications was analyzed. Biomaterials were created using a recombinant protein formed by the consensus repeat derived from the spider Nephila clavipes major ampullate dragline silk and the silica-promoting peptide R5 derived from the Cylindrotheca fusiformis silaffin gene. A combination of computational and experimental techniques revealed the optimal conditions for the synthesis of biomineralized silk-silica films with enhanced expression of markers related to bone regeneration.


Assuntos
Nanocompostos , Nanopartículas , Aranhas , Animais , Humanos , Dióxido de Silício , Seda
9.
Adv Drug Deliv Rev ; 160: 186-198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33080258

RESUMO

Advances in medical science have led to diverse new therapeutic modalities, as well as enhanced understanding of the progression of various disease states. These findings facilitate the design and development of more customized and exquisite drug delivery systems that aim to improve therapeutic indices of drugs to treat a variety of conditions. Synthetic polymer-based drug carriers have often been the focus of such research. However, these structures suffer from challenges with heterogeneity of the starting material, limited chemical features, complex functionalization methods, and in some cases a lack of biocompatibility. Consequently, protein-based polymers have garnered much attention in recent years due to their monodisperse features, ease of production and functionalization, and biocompatibility. Genetic engineering techniques enable the advancement of protein-based drug delivery systems with finely tuned physicochemical properties, and thus an expanded level of customization unavailable with synthetic polymers. Of these genetically engineered proteins, elastin-like proteins (ELP), silk-like proteins (SLP), and silk-elastin-like proteins (SELP) provide a unique set of alternatives for designing drug delivery systems due to their inherent chemical and physical properties and ease of engineering afforded by recombinant DNA technologies. In this review we examine the advantages of genetically engineered drug delivery systems with emphasis on ELP and SLP constructions. Methods for fabrication and relevant biomedical applications will also be discussed.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Elastina/química , Engenharia de Proteínas/métodos , Seda/química , Materiais Biocompatíveis/química , Técnicas de Transferência de Genes , Humanos , Hidrogéis/química , Nanopartículas , Tamanho da Partícula , Proteínas Recombinantes/química
10.
Materials (Basel) ; 13(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823912

RESUMO

The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of ß-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of ß-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties.

11.
Adv Healthc Mater ; 9(11): e2000266, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32338463

RESUMO

Three-dimensional organoid tissue culture models are a promising approach for the study of biological processes including diseases. Advances in these tissue culture technologies improve in vitro analysis compared to standard 2D cellular approaches and are more representative of the physiological environment. However, a major challenge associated with organoid systems stems from the laborious processing involved in the analysis of large numbers of organoids. Here the design, characterization, and application of silk-elastin-like protein-based smart carrier arrays for processing organoids is presented. Fabrication of hydrogel-based carrier systems at room temperature result in organized arrays of organoids that maintain tissue culture plate orientation and could be processed simultaneously for histology. The system works by transfer of the organoids to the hydrogel arrays after which the material is subjected to 65 °C to induce hydrogel contraction to secure the organoids, resulting in multisample constructs and allowing for placement on a microscope slide. Histological processing and immunostaining of these arrayed cerebral organoids analyzed within the contracted silk-elastin-like proteins (SELP) show retention of native organoid features compared to controls without the hydrogel carrier system, thus avoiding any artifacts. These SELP carriers present a useful approach for improving efficiency of scaled organoid screening and processing.


Assuntos
Fenômenos Biológicos , Materiais Inteligentes , Elastina , Hidrogéis , Organoides , Seda
12.
Adv Mater ; 31(44): e1904720, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31532880

RESUMO

There is great interest in developing conductive biomaterials for the manufacturing of sensors or flexible electronics with applications in healthcare, tracking human motion, or in situ strain measurements. These biomaterials aim to overcome the mismatch in mechanical properties at the interface between typical rigid semiconductor sensors and soft, often uneven biological surfaces or tissues for in vivo and ex vivo applications. Here, the use of biobased carbons to fabricate conductive, highly stretchable, flexible, and biocompatible silk-based composite biomaterials is demonstrated. Biobased carbons are synthesized via hydrothermal processing, an aqueous thermochemical method that converts biomass into a carbonaceous material that can be applied upon activation as conductive filler in composite biomaterials. Experimental synthesis and full-atomistic molecular dynamics modeling are combined to synthesize and characterize these conductive composite biomaterials, made entirely from renewable sources and with promising applications in fields like biomedicine, energy, and electronics.


Assuntos
Materiais Biocompatíveis/química , Fibroínas/química , Grafite/química , Linhagem Celular , Quitina/química , Condutividade Elétrica , Fibroblastos/citologia , Temperatura Alta , Fenômenos Mecânicos , Simulação de Dinâmica Molecular , Impressão Tridimensional , Propriedades de Superfície , Madeira/química
13.
mBio ; 10(2)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967457

RESUMO

We have identified and characterized the AccS multidomain sensor kinase that mediates the activation of the AccR master regulator involved in carbon catabolite repression (CCR) of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. A truncated AccS protein that contains only the soluble C-terminal autokinase module (AccS') accounts for the succinate-dependent CCR control. In vitro assays with purified AccS' revealed its autophosphorylation, phosphotransfer from AccS'∼P to the Asp60 residue of AccR, and the phosphatase activity toward its phosphorylated response regulator, indicating that the equilibrium between the kinase and phosphatase activities of AccS' may control the phosphorylation state of the AccR transcriptional regulator. Oxidized quinones, e.g., ubiquinone 0 and menadione, switched the AccS' autokinase activity off, and three conserved Cys residues, which are not essential for catalysis, are involved in such inhibition. Thiol oxidation by quinones caused a change in the oligomeric state of the AccS' dimer resulting in the formation of an inactive monomer. This thiol-based redox switch is tuned by the cellular energy state, which can change depending on the carbon source that the cells are using. This work expands the functional diversity of redox-sensitive sensor kinases, showing that they can control new bacterial processes such as CCR of the anaerobic catabolism of aromatic compounds. The AccSR two-component system is conserved in the genomes of some betaproteobacteria, where it might play a more general role in controlling the global metabolic state according to carbon availability.IMPORTANCE Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium Azoarcus sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state.


Assuntos
Azoarcus/enzimologia , Repressão Catabólica , Histidina Quinase/metabolismo , Anaerobiose , Azoarcus/genética , Azoarcus/metabolismo , Histidina Quinase/genética , Histidina Quinase/isolamento & purificação , Oxirredução , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Quinonas/metabolismo
14.
Adv Funct Mater ; 28(27)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-30140193

RESUMO

Biomineralization at the organic-inorganic interface is critical to many biology material functions in vitro and in vivo. Recombinant silk-silica fusion peptides are organic-inorganic hybrid material systems that can be effectively used to study and control biologically-mediated mineralization due to the genetic basis of sequence control. However, to date, the mechanisms by which these functionalized silk-silica proteins trigger the differentiation of human mesenchymal stem cells (hMSCs) to osteoblasts remain unknown. To address this challenge, we analyzed silk-silica surfaces for silica-hMSC receptor binding and activation, and the intracellular pathways involved in the induction of osteogenesis on these bioengineered biomaterials. The induction of gene expression of αVß3 integrin, all three Mitogen-activated Protein Kinsases (MAPKs) as well as c-Jun, Runt-related Transcription Factor 2 (Runx2) and osteoblast marker genes was demonstrated upon growth of the hMSCs on the silk-silica materials. This induction of key markers of osteogenesis correlated with the content of silica on the materials. Moreover, computational simulations were performed for silk/silica-integrin binding which showed activation of αVß3 integrin in contact with silica. This integrated computational and experimental approach provides insight into interactions that regulate osteogenesis towards more efficient biomaterial designs.

15.
mBio ; 9(3)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921665

RESUMO

Side chain-containing steroids are ubiquitous constituents of biological membranes that are persistent to biodegradation. Aerobic, steroid-degrading bacteria employ oxygenases for isoprenoid side chain and tetracyclic steran ring cleavage. In contrast, a Mo-containing steroid C-25 dehydrogenase (S25DH) of the dimethyl sulfoxide (DMSO) reductase family catalyzes the oxygen-independent hydroxylation of tertiary C-25 in the anaerobic, cholesterol-degrading bacterium Sterolibacterium denitrificans Its genome contains eight paralogous genes encoding active site α-subunits of putative S25DH-like proteins. The difficult enrichment of labile, oxygen-sensitive S25DH from the wild-type bacteria and the inability of its active heterologous production have largely hampered the study of S25DH-like gene products. Here we established a heterologous expression platform for the three structural genes of S25DH subunits together with an essential chaperone in the denitrifying betaproteobacterium Thauera aromatica K172. Using this system, S25DH1 and three isoenzymes (S25DH2, S25DH3, and S25DH4) were overproduced in a soluble, active form allowing a straightforward purification of nontagged αßγ complexes. All S25DHs contained molybdenum, four [4Fe-4S] clusters, one [3Fe-4S] cluster, and heme B and catalyzed the specific, water-dependent C-25 hydroxylations of various 4-en-3-one forms of phytosterols and zoosterols. Crude extracts from T. aromatica expressing genes encoding S25DH1 catalyzed the hydroxylation of vitamin D3 (VD3) to the clinically relevant 25-OH-VD3 with >95% yield at a rate 6.5-fold higher than that of wild-type bacterial extracts; the specific activity of recombinant S25DH1 was twofold higher than that of wild-type enzyme. These results demonstrate the potential application of the established expression platform for 25-OH-VD3 synthesis and pave the way for the characterization of previously genetically inaccessible S25DH-like Mo enzymes of the DMSO reductase family.IMPORTANCE Steroids are ubiquitous bioactive compounds, some of which are considered an emerging class of micropollutants. Their degradation by microorganisms is the major process of steroid elimination from the environment. While oxygenase-dependent steroid degradation in aerobes has been studied for more than 40 years, initial insights into the anoxic steroid degradation have only recently been obtained. Molybdenum-dependent steroid C25 dehydrogenases (S25DHs) have been proposed to catalyze oxygen-independent side chain hydroxylations of globally abundant zoo-, phyto-, and mycosterols; however, so far, their lability has allowed only the initial characterization of a single S25DH. Here we report on a heterologous gene expression platform that allowed for easy isolation and characterization of four highly active S25DH isoenzymes. The results obtained demonstrate the key role of S25DHs during anoxic degradation of various steroids. Moreover, the platform is valuable for the efficient enzymatic hydroxylation of vitamin D3 to its clinically relevant C-25-OH form.


Assuntos
Calcifediol/síntese química , Colestanotriol 26-Mono-Oxigenase/química , Colestanotriol 26-Mono-Oxigenase/metabolismo , Molibdênio/química , Esteroides/metabolismo , Anaerobiose , Betaproteobacteria/enzimologia , Betaproteobacteria/genética , Biocatálise , Domínio Catalítico , Colestanotriol 26-Mono-Oxigenase/biossíntese , Colestanotriol 26-Mono-Oxigenase/genética , Expressão Gênica , Hidroxilação , Cinética , Chaperonas Moleculares , Oxirredução , Especificidade por Substrato , Thauera/enzimologia , Thauera/genética
16.
ACS Biomater Sci Eng ; 3(8): 1542-1556, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28966980

RESUMO

Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.

17.
Front Microbiol ; 8: 539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421043

RESUMO

The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.

18.
Proc Natl Acad Sci U S A ; 113(46): 13174-13179, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799551

RESUMO

Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls diverse functions in bacteria, including transitions from planktonic to biofilm lifestyles, virulence, motility, and cell cycle. Here we describe TolR, a hybrid two-component system (HTCS), from the ß-proteobacterium Azoarcus sp. strain CIB that degrades c-di-GMP in response to aromatic hydrocarbons, including toluene. This response protects cells from toluene toxicity during anaerobic growth. Whereas wild-type cells tolerated a sudden exposure to a toxic concentration of toluene, a tolR mutant strain or a strain overexpressing a diguanylate cyclase gene lost viability upon toluene shock. TolR comprises an N-terminal aromatic hydrocarbon-sensing Per-Arnt-Sim (PAS) domain, followed by an autokinase domain, a response regulator domain, and a C-terminal c-di-GMP phosphodiesterase (PDE) domain. Autophosphorylation of TolR in response to toluene exposure initiated an intramolecular phosphotransfer to the response regulator domain that resulted in c-di-GMP degradation. The TolR protein was engineered as a functional sensor histidine kinase (TolRSK) and an independent response regulator (TolRRR). This classic two-component system (CTCS) operated less efficiently than TolR, suggesting that TolR was evolved as a HTCS to optimize signal transduction. Our results suggest that TolR enables Azoarcus sp. CIB to adapt to toxic aromatic hydrocarbons under anaerobic conditions by modulating cellular levels of c-di-GMP. This is an additional role for c-di-GMP in bacterial physiology.


Assuntos
Azoarcus/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Membrana/metabolismo , Tolueno/toxicidade , Azoarcus/efeitos dos fármacos , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Proteínas de Membrana/genética
19.
Environ Microbiol ; 18(12): 5018-5031, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27450529

RESUMO

Integrative and conjugative elements (ICE) play a major role in aerobic degradation of aromatic compounds, but they have not yet been shown to be involved in anaerobic degradation. We have characterized here the ICEXTD element which endows to the beta-proteobacterium Azoarcus sp. CIB with the ability to utilize aromatic hydrocarbons. The core region of ICEXTD , which shows a remarkable synteny with that of ICEclc-like elements, allows its own intracellular and intercellular mobility. ICEXTD integrates at the tRNAGly of the host chromosome, but it can also excise to produce a ready to transfer circular form. The adaptation modules of ICEXTD represent a unique combination of gene clusters for aerobic (tod genes) and anaerobic (bss-bbs and mbd genes) degradation of certain aromatic hydrocarbons, e.g., toluene, m-xylene and cumene. Transfer of ICEXTD to other Azoarcus strains, e.g., A. evansii, confers them the ability to degrade aromatic hydrocarbons both aerobically and anaerobically. Interestingly, ICEXTD allows Cupriavidus pinatubonensis, a bacterium unable to degrade anaerobically aromatic compounds, to grow with m-xylene under anoxic conditions. Thus, ICEXTD constitutes the first mobile genetic element able to expand the catabolic abilities of certain bacteria for the removal of aromatic hydrocarbons either in the presence or absence of oxygen.


Assuntos
Azoarcus/metabolismo , Conjugação Genética , Elementos de DNA Transponíveis , Aerobiose , Anaerobiose , Azoarcus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo
20.
Syst Appl Microbiol ; 38(7): 462-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26259823

RESUMO

The genomic features of Azoarcus sp. CIB reflect its most distinguishing phenotypes as a diazotroph, facultative anaerobe, capable of degrading either aerobically and/or anaerobically a wide range of aromatic compounds, including some toxic hydrocarbons such as toluene and m-xylene, as well as its endophytic lifestyle. The analyses of its genome have expanded the catabolic potential of strain CIB toward common natural compounds, such as certain diterpenes, that were not anticipated as carbon sources. The high number of predicted solvent efflux pumps and heavy metal resistance gene clusters has provided the first evidence for two environmentally relevant features of this bacterium that remained unknown. Genome mining has revealed several gene clusters likely involved in the endophytic lifestyle of strain CIB, opening the door to the molecular characterization of some plant growth promoting traits. Horizontal gene transfer and mobile genetic elements appear to have played a major role as a mechanism of adaptation of this bacterium to different lifestyles. This work paves the way for a systems biology-based understanding of the abilities of Azoarcus sp. CIB to integrate aerobic and anaerobic metabolism of aromatic compounds, tolerate stress conditions, and interact with plants as an endophyte of great potential for phytostimulation and phytoremediation strategies. Comparative genomics provides an Azoarcus pan genome that confirms the global metabolic flexibility of this genus, and suggests that its phylogeny should be revisited.


Assuntos
Azoarcus/genética , Azoarcus/fisiologia , Biologia Computacional , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Família Multigênica , Análise de Sequência de DNA , Adaptação Biológica , Aerobiose , Anaerobiose , Farmacorresistência Bacteriana , Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Dados de Sequência Molecular , Fixação de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...