Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 40(9): 939-956.e16, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985343

RESUMO

Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.


Assuntos
Neoplasias Encefálicas , Glioma , Leucemia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Inibidores Enzimáticos/uso terapêutico , Glioma/tratamento farmacológico , Glioma/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos , Mutação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Salicilanilidas , Triazóis
2.
Sci Adv ; 8(35): eabn9550, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044570

RESUMO

In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.


Assuntos
Complexo I de Transporte de Elétrons , Glucose , Glutamina , Neoplasias , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Isótopos , Camundongos , NAD/metabolismo , Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 604(7905): 349-353, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388219

RESUMO

Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development2,3. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programmes in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucose's contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programmes are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programmes in developing organs in utero.


Assuntos
Ciclo do Ácido Cítrico , Desenvolvimento Fetal , Metabolômica , Placenta , Animais , Embrião de Mamíferos/metabolismo , Feminino , Glucose/metabolismo , Mamíferos/metabolismo , Camundongos , Placenta/metabolismo , Gravidez
4.
Cancer Res ; 82(7): 1251-1266, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149585

RESUMO

Despite being the leading cause of cancer deaths, metastasis remains a poorly understood process. To identify novel regulators of metastasis in melanoma, we performed a large-scale RNA sequencing screen of 48 samples from patient-derived xenograft (PDX) subcutaneous melanomas and their associated metastases. In comparison with primary tumors, expression of glycolytic genes was frequently decreased in metastases, whereas expression of some tricarboxylic acid (TCA) cycle genes was increased in metastases. Consistent with these transcriptional changes, melanoma metastases underwent a metabolic switch characterized by decreased levels of glycolytic metabolites and increased abundance of TCA cycle metabolites. A short isoform of glyceraldehyde-3-phosphate dehydrogenase, spermatogenic (GAPDHS) lacking the N-terminal domain suppressed metastasis and regulated this metabolic switch. GAPDHS was downregulated in metastatic nodules from PDX models as well as in human patients. Overexpression of GAPDHS was sufficient to block melanoma metastasis, whereas its inhibition promoted metastasis, decreased glycolysis, and increased levels of certain TCA cycle metabolites and their derivatives including citrate, fumarate, malate, and aspartate. Isotope tracing studies indicated that GAPDHS mediates this shift through changes in pyruvate carboxylase activity and aspartate synthesis, both metabolic pathways critical for cancer survival and metastasis. Together, these data identify a short isoform of GAPDHS that limits melanoma metastasis and regulates central carbon metabolism. SIGNIFICANCE: This study characterizes metabolic changes during cancer metastasis and identifies GAPDHS as a novel regulator of these processes in melanoma cells.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases , Melanoma , Ciclo do Ácido Cítrico , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise , Humanos , Melanoma/patologia , Isoformas de Proteínas/metabolismo , Espermatogênese
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101990

RESUMO

Emerging evidence indicates that a subset of RNA molecules annotated as noncoding contain short open reading frames that code for small functional proteins called microproteins, which have largely been overlooked due to their small size. To search for cardiac-expressed microproteins, we used a comparative genomics approach and identified mitolamban (Mtlbn) as a highly conserved 47-amino acid transmembrane protein that is abundantly expressed in the heart. Mtlbn localizes specifically to the inner mitochondrial membrane where it interacts with subunits of complex III of the electron transport chain and with mitochondrial respiratory supercomplexes. Genetic deletion of Mtlbn in mice altered complex III assembly dynamics and reduced complex III activity. Unbiased metabolomic analysis of heart tissue from Mtlbn knockout mice further revealed an altered metabolite profile consistent with deficiencies in complex III activity. Cardiac-specific Mtlbn overexpression in transgenic (TG) mice induced cardiomyopathy with histological, biochemical, and ultrastructural pathologic features that contributed to premature death. Metabolomic analysis and biochemical studies indicated that hearts from Mtlbn TG mice exhibited increased oxidative stress and mitochondrial dysfunction. These findings reveal Mtlbn as a cardiac-expressed inner mitochondrial membrane microprotein that contributes to mitochondrial electron transport chain activity through direct association with complex III and the regulation of its assembly and function.


Assuntos
Cardiomiopatias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Miocárdio/metabolismo , Animais , Cardiomiopatias/genética , Células Cultivadas , Complexo III da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Especificidade de Órgãos
6.
Genes Dev ; 36(3-4): 149-166, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35115380

RESUMO

The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.


Assuntos
Fatores de Transcrição ARNTL , NAD , Células Satélites de Músculo Esquelético , Fatores de Transcrição ARNTL/genética , Animais , Diferenciação Celular/genética , Hipóxia , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético , Mioblastos
7.
Cell Metab ; 33(9): 1777-1792.e8, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375613

RESUMO

Cancer cells are metabolically similar to their corresponding normal tissues. Differences between cancers and normal tissues may reflect reprogramming during transformation or maintenance of the metabolism of the specific normal cell type that originated the cancer. Here, we compare glucose metabolism in hematopoiesis and leukemia. Thymus T cell progenitors were glucose avid and oxidized more glucose in the tricarboxylic acid cycle through pyruvate dehydrogenase (PDH) as compared with other hematopoietic cells. PDH deletion decreased double-positive T cell progenitor cells but had no effect on hematopoietic stem cells, myeloid progenitors, or other hematopoietic cells. PDH deletion blocked the development of Pten-deficient T cell leukemia, but not the development of a Pten-deficient myeloid neoplasm. Therefore, the requirement for PDH in leukemia reflected the metabolism of the normal cell of origin independently of the driver genetic lesion. PDH was required to prevent pyruvate accumulation and maintain glutathione levels and redox homeostasis.


Assuntos
Leucemia , Ácido Pirúvico , Linhagem da Célula , Ciclo do Ácido Cítrico , Humanos , Oxirredutases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
8.
Cell Stem Cell ; 28(11): 1982-1999.e8, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34450065

RESUMO

The electron transport chain promotes aspartate synthesis, which is required for cancer cell proliferation. However, it is unclear whether aspartate is limiting in normal stem cells. We found that mouse hematopoietic stem cells (HSCs) depend entirely on cell-autonomous aspartate synthesis, which increases upon HSC activation. Overexpression of the glutamate/aspartate transporter, Glast, or deletion of glutamic-oxaloacetic transaminase 1 (Got1) each increased aspartate levels in HSCs/progenitor cells and increased the function of HSCs but not colony-forming progenitors. Conversely, deletion of Got2 reduced aspartate levels and the function of HSCs but not colony-forming progenitors. Deletion of Got1 and Got2 eliminated HSCs. Isotope tracing showed aspartate was used to synthesize asparagine and purines. Both contributed to increased HSC function as deletion of asparagine synthetase or treatment with 6-mercaptopurine attenuated the increased function of GLAST-overexpressing HSCs. HSC function is thus limited by aspartate, purine, and asparagine availability during hematopoietic regeneration.


Assuntos
Ácido Aspártico , Células-Tronco Hematopoéticas , Animais , Proliferação de Células , Camundongos
9.
Elife ; 102021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33470192

RESUMO

Little is known about the metabolic regulation of rare cell populations because most metabolites are hard to detect in small numbers of cells. We previously described a method for metabolomic profiling of flow cytometrically isolated hematopoietic stem cells (HSCs) that detects 60 metabolites in 10,000 cells (Agathocleous et al., 2017). Here we describe a new method involving hydrophilic liquid interaction chromatography and high-sensitivity orbitrap mass spectrometry that detected 160 metabolites in 10,000 HSCs, including many more glycolytic and lipid intermediates. We improved chromatographic separation, increased mass resolution, minimized ion suppression, and eliminated sample drying. Most metabolite levels did not significantly change during cell isolation. Mouse HSCs exhibited increased glycerophospholipids relative to bone marrow cells and methotrexate treatment altered purine biosynthesis. Circulating human melanoma cells were depleted for purine intermediates relative to subcutaneous tumors, suggesting decreased purine synthesis during metastasis. These methods facilitate the routine metabolomic analysis of rare cells from tissues.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Animais , Feminino , Citometria de Fluxo , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos
10.
Nature ; 585(7823): 113-118, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32814895

RESUMO

Cancer cells, including melanoma cells, often metastasize regionally through the lymphatic system before metastasizing systemically through the blood1-4; however, the reason for this is unclear. Here we show that melanoma cells in lymph experience less oxidative stress and form more metastases than melanoma cells in blood. Immunocompromised mice with melanomas derived from patients, and immunocompetent mice with mouse melanomas, had more melanoma cells per microlitre in tumour-draining lymph than in tumour-draining blood. Cells that metastasized through blood, but not those that metastasized through lymph, became dependent on the ferroptosis inhibitor GPX4. Cells that were pretreated with chemical ferroptosis inhibitors formed more metastases than untreated cells after intravenous, but not intralymphatic, injection. We observed multiple differences between lymph fluid and blood plasma that may contribute to decreased oxidative stress and ferroptosis in lymph, including higher levels of glutathione and oleic acid and less free iron in lymph. Oleic acid protected melanoma cells from ferroptosis in an Acsl3-dependent manner and increased their capacity to form metastatic tumours. Melanoma cells from lymph nodes were more resistant to ferroptosis and formed more metastases after intravenous injection than did melanoma cells from subcutaneous tumours. Exposure to the lymphatic environment thus protects melanoma cells from ferroptosis and increases their ability to survive during subsequent metastasis through the blood.


Assuntos
Ferroptose , Linfa/metabolismo , Melanoma/patologia , Metástase Neoplásica/patologia , Animais , Sobrevivência Celular , Coenzima A Ligases/metabolismo , Feminino , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Ferro/metabolismo , Masculino , Melanoma/sangue , Melanoma/metabolismo , Camundongos , Metástase Neoplásica/tratamento farmacológico , Ácido Oleico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...