Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 203, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374160

RESUMO

Regenerative potential is widespread but unevenly distributed across animals. However, our understanding of the molecular mechanisms underlying regenerative processes is limited to a handful of model organisms, restricting robust comparative analyses. Here, we conduct a time course of RNA-seq during whole body regeneration in Mnemiopsis leidyi (Ctenophora) to uncover gene expression changes that correspond with key events during the regenerative timeline of this species. We identified several genes highly enriched in this dataset beginning as early as 10 minutes after surgical bisection including transcription factors in the early timepoints, peptidases in the middle timepoints, and cytoskeletal genes in the later timepoints. We validated the expression of early response transcription factors by whole mount in situ hybridization, showing that these genes exhibited high expression in tissues surrounding the wound site. These genes exhibit a pattern of transient upregulation as seen in a variety of other organisms, suggesting that they may be initiators of an ancient gene regulatory network linking wound healing to the initiation of a regenerative response.


Assuntos
Ctenóforos , Animais , Ctenóforos/genética , Cicatrização , Fatores de Transcrição
2.
iScience ; 27(3): 109131, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38384856

RESUMO

Coral conservation requires a mechanistic understanding of how environmental stresses disrupt biomineralization, but progress has been slow, primarily because corals are not easily amenable to laboratory research. Here, we highlight how the starlet sea anemone, Nematostella vectensis, can serve as a model to interrogate the cellular mechanisms of coral biomineralization. We have developed transgenic constructs using biomineralizing genes that can be injected into Nematostella zygotes and designed such that translated proteins may be purified for physicochemical characterization. Using fluorescent tags, we confirm the ectopic expression of the coral biomineralizing protein, SpCARP1, in Nematostella. We demonstrate via calcein staining that SpCARP1 concentrates calcium ions in Nematostella, likely initiating the formation of mineral precursors, consistent with its suspected role in corals. These results lay a fundamental groundwork for establishing Nematostella as an in vivo system to explore the evolutionary and cellular mechanisms of coral biomineralization, improve coral conservation efforts, and even develop novel biomaterials.

3.
Evodevo ; 14(1): 14, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735470

RESUMO

BACKGROUND: Opsins are the primary proteins responsible for light detection in animals. Cnidarians (jellyfish, sea anemones, corals) have diverse visual systems that have evolved in parallel with bilaterians (squid, flies, fish) for hundreds of millions of years. Medusozoans (e.g., jellyfish, hydroids) have evolved eyes multiple times, each time independently incorporating distinct opsin orthologs. Anthozoans (e.g., corals, sea anemones,) have diverse light-mediated behaviors and, despite being eyeless, exhibit more extensive opsin duplications than medusozoans. To better understand the evolution of photosensitivity in animals without eyes, we increased anthozoan representation in the phylogeny of animal opsins and investigated the large but poorly characterized opsin family in the sea anemone Nematostella vectensis. RESULTS: We analyzed genomic and transcriptomic data from 16 species of cnidarians to generate a large opsin phylogeny (708 sequences) with the largest sampling of anthozoan sequences to date. We identified 29 opsins from N. vectensis (NvOpsins) with high confidence, using transcriptomic and genomic datasets. We found that lineage-specific opsin duplications are common across Cnidaria, with anthozoan lineages exhibiting among the highest numbers of opsins in animals. To establish putative photosensory function of NvOpsins, we identified canonically conserved protein domains and amino acid sequences essential for opsin function in other animal species. We show high sequence diversity among NvOpsins at sites important for photoreception and transduction, suggesting potentially diverse functions. We further examined the spatiotemporal expression of NvOpsins and found both dynamic expression of opsins during embryonic development and sexually dimorphic opsin expression in adults. CONCLUSIONS: These data show that lineage-specific duplication and divergence has led to expansive diversity of opsins in eyeless cnidarians, suggesting opsins from these animals may exhibit novel biochemical functions. The variable expression patterns of opsins in N. vectensis suggest opsin gene duplications allowed for a radiation of unique sensory cell types with tissue- and stage-specific functions. This diffuse network of distinct sensory cell types could be an adaptive solution for varied sensory tasks experienced in distinct life history stages in Anthozoans.

4.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288606

RESUMO

Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.


Assuntos
Ctenóforos , Anêmonas-do-Mar , Animais , Filogenia , Poliadenilação , Ctenóforos/genética , Anêmonas-do-Mar/genética
5.
Nat Commun ; 14(1): 885, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797294

RESUMO

Cnidocytes are the explosive stinging cells unique to cnidarians (corals, jellyfish, etc). Specialized for prey capture and defense, cnidocytes comprise a group of over 30 morphologically and functionally distinct cell types. These unusual cells are iconic examples of biological novelty but the developmental mechanisms driving diversity of the stinging apparatus are poorly characterized, making it challenging to understand the evolutionary history of stinging cells. Using CRISPR/Cas9-mediated genome editing in the sea anemone Nematostella vectensis, we show that a single transcription factor (NvSox2) acts as a binary switch between two alternative stinging cell fates. Knockout of NvSox2 causes a transformation of piercing cells into ensnaring cells, which are common in other species of sea anemone but appear to have been silenced in N. vectensis. These results reveal an unusual case of single-cell atavism and expand our understanding of the diversification of cell type identity.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Evolução Biológica , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Diferenciação Celular
6.
Cell Rep ; 42(2): 112112, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795564

RESUMO

Extensive adenosine-to-inosine (A-to-I) editing of nuclear-transcribed mRNAs is the hallmark of metazoan transcriptional regulation. Here, by profiling the RNA editomes of 22 species that cover major groups of Holozoa, we provide substantial evidence supporting A-to-I mRNA editing as a regulatory innovation originating in the last common ancestor of extant metazoans. This ancient biochemistry process is preserved in most extant metazoan phyla and primarily targets endogenous double-stranded RNA (dsRNA) formed by evolutionarily young repeats. We also find intermolecular pairing of sense-antisense transcripts as an important mechanism for forming dsRNA substrates for A-to-I editing in some but not all lineages. Likewise, recoding editing is rarely shared across lineages but preferentially targets genes involved in neural and cytoskeleton systems in bilaterians. We conclude that metazoan A-to-I editing might first emerge as a safeguard mechanism against repeat-derived dsRNA and was later co-opted into diverse biological processes due to its mutagenic nature.


Assuntos
Edição de RNA , RNA de Cadeia Dupla , Animais , Edição de RNA/genética , RNA de Cadeia Dupla/genética , RNA Mensageiro , Adenosina Desaminase/metabolismo , Inosina/genética
7.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740225

RESUMO

Innexins facilitate cell-cell communication by forming gap junctions or nonjunctional hemichannels, which play important roles in metabolic, chemical, ionic, and electrical coupling. The lack of knowledge regarding the evolution and role of these channels in ctenophores (comb jellies), the likely sister group to the rest of animals, represents a substantial gap in our understanding of the evolution of intercellular communication in animals. Here, we identify and phylogenetically characterize the complete set of innexins of four ctenophores: Mnemiopsis leidyi, Hormiphora californensis, Pleurobrachia bachei, and Beroe ovata. Our phylogenetic analyses suggest that ctenophore innexins diversified independently from those of other animals and were established early in the emergence of ctenophores. We identified a four-innexin genomic cluster, which was present in the last common ancestor of these four species and has been largely maintained in these lineages. Evidence from correlated spatial and temporal gene expression of the M. leidyi innexin cluster suggests that this cluster has been maintained due to constraints related to gene regulation. We describe the basic electrophysiological properties of putative ctenophore hemichannels from muscle cells using intracellular recording techniques, showing substantial overlap with the properties of bilaterian innexin channels. Together, our results suggest that the last common ancestor of animals had gap junctional channels also capable of forming functional innexin hemichannels, and that innexin genes have independently evolved in major lineages throughout Metazoa.


Assuntos
Ctenóforos , Animais , Ctenóforos/genética , Filogenia , Transdução de Sinais , Genoma , Comunicação Celular/fisiologia
9.
Genome Biol Evol ; 15(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36508343

RESUMO

Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian-bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages.


Assuntos
Antozoários , Cnidários , Animais , Cnidários/genética , Filogenia , Antozoários/genética , Genes Homeobox , Evolução Molecular
10.
Soft Matter ; 18(45): 8554-8560, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350122

RESUMO

In many tissues, cell type varies over single-cell length-scales, creating detailed heterogeneities fundamental to physiological function. To gain understanding of the relationship between tissue function and detailed structure, and eventually to engineer structurally and physiologically accurate tissues, we need the ability to assemble 3D cellular structures having the level of detail found in living tissue. Here we introduce a method of 3D cell assembly having a level of precision finer than the single-cell scale. With this method we create detailed cellular patterns, demonstrating that cell type can be varied over the single-cell scale and showing function after their assembly.

11.
Biomimetics (Basel) ; 7(3)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892356

RESUMO

Cellular strategies and regulation of their crystallization mechanisms are essential to the formation of biominerals, and harnessing these strategies will be important for the future creation of novel non-native biominerals that recapitulate the impressive properties biominerals possess. Harnessing these biosynthetic strategies requires an understanding of the interplay between insoluble organic matrices, mineral precursors, and soluble organic and inorganic additives. Our long-range goal is to use a sea anemone model system (Nematostella vectensis) to examine the role of intrinsically disordered proteins (IDPs) found in native biomineral systems. Here, we study how ambient temperatures (25-37 °C) and seawater solution compositions (varying NaCl and Mg ratios) will affect the infiltration of organic matrices with calcium carbonate mineral precursors generated through a polymer-induced liquid-precursor (PILP) process. Fibrillar collagen matrices were used to assess whether solution conditions were suitable for intrafibrillar mineralization, and SEM with EDS was used to analyze mineral infiltration. Conditions of temperatures 30 °C and above and with low Mg:Ca ratios were determined to be suitable conditions for calcium carbonate infiltration. The information obtained from these observations may be useful for the manipulation and study of cellular secreted IDPs in our quest to create novel biosynthetic materials.

12.
Proc Natl Acad Sci U S A ; 119(19): e2113701119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500123

RESUMO

Cnidocytes (i.e., stinging cells) are an unequivocally novel cell type used by cnidarians (i.e., corals, jellyfish, and their kin) to immobilize prey. Although they are known to share a common evolutionary origin with neurons, the developmental program that promoted the emergence of cnidocyte fate is not known. Using functional genomics in the sea anemone, Nematostella vectensis, we show that cnidocytes develop by suppression of neural fate in a subset of neurons expressing RFamide. We further show that a single regulatory gene, a C2H2-type zinc finger transcription factor (ZNF845), coordinates both the gain of novel (cnidocyte-specific) traits and the inhibition of ancestral (neural) traits during cnidocyte development and that this gene arose by domain shuffling in the stem cnidarian. Thus, we report a mechanism by which a truly novel regulatory gene (ZNF845) promotes the development of a truly novel cell type (cnidocyte) through duplication of an ancestral cell lineage (neuron) and inhibition of its ancestral identity (RFamide).


Assuntos
Anêmonas-do-Mar , Animais , Diferenciação Celular , Genes Reguladores , Anêmonas-do-Mar/metabolismo
13.
Curr Biol ; 32(11): 2402-2415.e4, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504283

RESUMO

Photosynthesis shapes the symbiotic relationships between cnidarians and Symbiodiniaceae algae-with many cnidarian hosts requiring symbiont photosynthate for survival-but little is known about how photosynthesis impacts symbiosis establishment. Here, we show that during symbiosis establishment, infection, proliferation, and maintenance can proceed without photosynthesis, but the ability to do so is dependent on specific cnidarian-Symbiodiniaceae relationships. The evaluation of 31 pairs of symbiotic relationships (five species of Symbiodiniaceae in sea anemone, coral, and jellyfish hosts) revealed that infection can occur without photosynthesis. A UV mutagenesis method for Symbiodiniaceae was established and used to generate six photosynthetic mutants that can infect these hosts. Without photosynthesis, Symbiodiniaceae cannot proliferate in the sea anemone Aiptasia or jellyfish Cassiopea but can proliferate in the juvenile polyps of the coral Acropora. After 6 months of darkness, Breviolum minutum is maintained within Aiptasia, indicating that Symbiodiniaceae maintenance can be independent of photosynthesis. Manipulating photosynthesis provides insights into cnidarian-Symbiodiniaceae symbiosis.


Assuntos
Antozoários , Dinoflagellida , Anêmonas-do-Mar , Animais , Fotossíntese , Simbiose
14.
Methods Mol Biol ; 2450: 95-119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359304

RESUMO

Ctenophores, also known as comb jellies, are a clade of fragile holopelagic, carnivorous marine invertebrates, that represent one of the most ancient extant groups of multicellular animals. Ctenophores show a remarkable ability to regenerate in the adult form, being capable of replacing all body parts (i.e., whole-body regeneration) after loss/amputation. With many favorable experimental features (optical clarity, stereotyped cell lineage, multiple cell types), a full genome sequence available and their early branching phylogenetic position, ctenophores are well placed to provide information about the evolution of regenerative ability throughout the Metazoa. Here, we provide a collection of detailed protocols for use of the lobate ctenophore Mnemiopsis leidyi to study whole-body regeneration, including specimen collection, husbandry, surgical manipulation, and imaging techniques.


Assuntos
Ctenóforos , Animais , Linhagem da Célula , Ctenóforos/genética , Genoma , Filogenia
15.
Proc Natl Acad Sci U S A ; 119(18): e2122052119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476523

RESUMO

A substantial body of literature reports that ctenophores exhibit an apparently unique life history characterized by biphasic sexual reproduction, the first phase of which is called larval reproduction or dissogeny. Whether this strategy is plastically deployed or a typical part of these species' life history was unknown. In contrast to previous reports, we show that the ctenophore Mnemiopsis leidyi does not have separate phases of early and adult reproduction, regardless of the morphological transition to what has been considered the adult form. Rather, these ctenophores begin to reproduce at a small body size and spawn continuously from this point onward under adequate environmental conditions. They do not display a gap in productivity for metamorphosis or other physiological transition at a certain body size. Furthermore, nutritional and environmental constraints on fecundity are similar in both small and large animals. Our results provide critical parameters for understanding resource partitioning between growth and reproduction in this taxon, with implications for management of this species in its invaded range. Finally, we report an observation of similarly small-size spawning in a beroid ctenophore, which is morphologically, ecologically, and phylogenetically distinct from other ctenophores reported to spawn at small sizes. We conclude that spawning at small body size should be considered as the default, on-time developmental trajectory rather than as precocious, stress-induced, or otherwise unusual for ctenophores. The ancestral ctenophore was likely a direct developer, consistent with the hypothesis that multiphasic life cycles were introduced after the divergence of the ctenophore lineage.


Assuntos
Ctenóforos , Animais , Feminino , Larva , Estágios do Ciclo de Vida , Parto , Gravidez , Reprodução
16.
Curr Top Dev Biol ; 147: 93-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337468

RESUMO

The goal of this chapter is to explain the reasoning for developing two understudied invertebrate animal species for asking specific biological questions. The first is the ctenophore (comb jelly) Mnemiopsis leidyi and the second is the anthozoan cnidarian (starlet sea anemone) Nematostella vectensis. Although these two taxa belong to some of the earliest branching extant metazoan clades, their developmental features could hardly be more different from one another. This should serve as a general warning to be careful when extrapolating comparisons of one species to another. Two-taxon comparisons are especially flawed; and to interpret features in a phylogenetic context one must sample carefully within a given taxon to determine how representative certain features are before comparing with other clades. The other benefit of this comparison is to identify key practical factors when attempting to develop new species for experimental investigation.


Assuntos
Ctenóforos , Anêmonas-do-Mar , Animais , Modelos Teóricos , Filogenia
17.
Genes (Basel) ; 12(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198839

RESUMO

Ctenophores (a.k.a. comb jellies) are one of the earliest branching extant metazoan phyla. Adult regenerative ability varies greatly within the group, with platyctenes undergoing both sexual and asexual reproduction by fission while others in the genus Beroe having completely lost the ability to replace missing body parts. We focus on the unique regenerative aspects of the lobate ctenophore, Mnemiopsis leidyi, which has become a popular model for its rapid wound healing and tissue replacement, optical clarity, and sequenced genome. M. leidyi's highly mosaic, stereotyped development has been leveraged to reveal the polar coordinate system that directs whole-body regeneration as well as lineage restriction of replacement cells in various regenerating organs. Several cell signaling pathways known to function in regeneration in other animals are absent from the ctenophore's genome. Further research will either reveal ancient principles of the regenerative process common to all animals or reveal novel solutions to the stability of cell fates and whole-body regeneration.


Assuntos
Ctenóforos/genética , Regeneração , Animais , Ctenóforos/fisiologia
18.
Front Zool ; 18(1): 29, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118945

RESUMO

BACKGROUND: Gelatinous zooplankton can be difficult to preserve morphologically due to unique physical properties of their cellular and acellular components. The relatively large volume of mesoglea leads to distortion of the delicate morphology and poor sample integrity in specimens prepared with standard aldehyde or alcohol fixation techniques. Similar challenges have made it difficult to extend standard laboratory methods such as in situ hybridization to larger juvenile ctenophores, hampering studies of late development. RESULTS: We have found that a household water repellant glass treatment product commonly used in laboratories, Rain-X®, alone or in combination with standard aldehyde fixatives, greatly improves morphological preservation of such delicate samples. We present detailed methods for preservation of ctenophores of diverse sizes compatible with long-term storage or detection and localization of target molecules such as with immunohistochemistry and in situ hybridization and show that this fixation might be broadly useful for preservation of other delicate marine specimens. CONCLUSION: This new method will enable superior preservation of morphology in gelatinous specimens for a variety of downstream goals. Extending this method may improve the morphological fidelity and durability of museum and laboratory specimens for other delicate sample types.

19.
Nat Commun ; 11(1): 4171, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820176

RESUMO

Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian-specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the mollusc Tritia (also known as Ilyanassa). Their expression patterns in representative species from five more spiralian phyla-the annelids, nemerteans, phoronids, brachiopods and rotifers-show that at least one of these, lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages.


Assuntos
Motivos de Aminoácidos/genética , Cílios/genética , Invertebrados/genética , Proteínas/genética , Animais , Anelídeos/classificação , Anelídeos/genética , Anelídeos/fisiologia , Evolução Biológica , Cílios/fisiologia , Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica/métodos , Invertebrados/classificação , Invertebrados/fisiologia , Larva/genética , Larva/fisiologia , Locomoção/fisiologia , Moluscos/classificação , Moluscos/genética , Moluscos/fisiologia , Filogenia , Especificidade da Espécie
20.
Elife ; 92020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32716297

RESUMO

In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.


Assuntos
Ctenóforos/genética , Desenvolvimento Embrionário/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Via de Sinalização Wnt , Animais , Ctenóforos/embriologia , Ctenóforos/crescimento & desenvolvimento , Embrião não Mamífero/embriologia , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...