Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731916

RESUMO

Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.


Assuntos
Pirazóis , Trypanosoma cruzi , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Humanos , Trypanosoma cruzi/efeitos dos fármacos , Antiparasitários/farmacologia , Antiparasitários/síntese química , Antiparasitários/química , Desenho de Fármacos , Leishmania infantum/efeitos dos fármacos , Relação Estrutura-Atividade , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química
2.
Vasc Biol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717284

RESUMO

The impact of α-tocopherol on atherosclerosis is unclear and controversial. While some studies suggest potential benefits, such as antioxidant properties that may reduce oxidative stress, other research indicates no significant preventive effects. The intricate interplay of various factors, including dosage, individual differences, and study methodologies, contributes to the ongoing uncertainty surrounding α-tocopherol's role in atherosclerosis. Further research is needed to clarify its impact and establish clearer guidelines. Therefore, we aimed to evaluate the impact of α-tocopherol on atherogenesis in ApoE-/- fibrillin (Fbn)1C1039G/+ mice, which is a unique mouse model of advanced atherosclerosis with typical features such as large necrotic cores, high levels of inflammation and intraplaque neovascularization that resemble the unstable phenotype of human plaques. ApoE-/- Fbn1C1039G+/- mice were fed a western-type diet (WD) supplemented with a high dose of α-tocopherol (500 mg/kg diet), while control mice were fed a WD containing a low dose of α-tocopherol (50 mg/kg diet). The high dose of α-tocopherol reduced plaque thickness and necrotic core area in the right common carotid artery (RCCA) after 24 weeks WD. Moreover, α-tocopherol decreased plaque formation and intraplaque neovascularization in the RCCA. In addition to its antiatherogenic effect, chronic supplementation of α-tocopherol improved cardiac function in ApoE-/- Fbn1C1039G/+ mice. However, chronic supplementation of α-tocopherol did not decrease lipid peroxidation. On the contrary, α-tocopherol acted as a prooxidant by increasing plasma levels of oxidized LDL and plaque malondialdehyde, an end product of lipid peroxidation. Our data indicate that α-tocopherol inhibits atherogenesis and improves cardiac function independent of its antioxidant properties.

3.
Vasc Biol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717303

RESUMO

Ferroptosis is a type of regulated necrosis that is associated with iron-dependent accumulation of lipid hydroperoxides. Given that iron deposition and lipid peroxidation initiate ferroptosis in atherosclerosis and contribute to further plaque development, we hypothesized that inhibition of ferroptosis could be of value in the treatment of atherosclerosis. Glutathione peroxidase 4 (GPX4) is the only enzyme known capable of reducing lipid hydroperoxides. Previous studies have demonstrated that inactivation of GPX4 results in ferroptosis while overexpression of GPX4 confers resistance to ferroptosis. In the present study, we examined the impact of GPX4 overexpression on the development of atherosclerotic plaques. GPX4-overexpressing mice (GPX4Tg/+) were crossbred with ApoE-/- mice and fed a western-type diet for 16 weeks. Atherosclerotic plaques of GPX4Tg/+ ApoE-/- mice showed increased GPX4 expression and a reduced amount of lipid hydroperoxides. However, plaque size and composition were not different as compared to control animals. Similarly, GPX4-overexpressing vascular smooth muscle cells and bone-marrow derived macrophages were not protected against lipid peroxidation and cell death triggered by the ferroptosis inducers erastin and 1S,3RRSL3. We concluded that GPX4 overexpression reduces lipid peroxidation in plaques of ApoE-/- mice, yet GPX4 overexpression is not sufficiently powerful to change plaque size or composition.

4.
Cardiology ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38432214

RESUMO

INTRODUCTION: Acute myocardial infarction (AMI) is a main contributor of sudden cardiac death worldwide. The discovery of new biomarkers that can improve AMI risk prediction meets a major clinical need for the identification of high-risk patients and the tailoring of medical treatment. Previously, we reported that autophagy a highly conserved catabolic mechanism for intracellular degradation of cellular components, is involved in atherosclerotic plaque phenotype and cardiac pathological remodeling. The crucial role of autophagy in the normal and diseased heart has been well described, and its activation functions as a pro-survival process in response to myocardial ischemia. However, autophagy is dysregulated in ischemia/reperfusion injury thus promoting necrotic or apoptotic cardiac cell death. Very few studies have focused on the plasma levels of autophagy markers in cardiovascular disease patients, even though they could be companion biomarkers of AMI injury. The aims of the present study were to evaluate: 1) whether variations in plasma levels of two key autophagy regulators ATG5 (Autophagy-related gene 5) and Beclin 1 (the mammalian yeast ortholog Atg6/Vps30) are associated with AMI and 2) their potential for predicting AMI risk. METHODS: The case-control study population included AMI patients (n = 100) and control subjects (n = 99) at high cardiovascular risk but without known coronary disease. Plasma levels of ATG5 and Beclin 1 were measured in the whole population study by enzyme-linked immunosorbent assay. RESULTS: Multivariate analyses adjusted on common cardiovascular factors and medical treatments, and receiver operating characteristic (ROC) curves demonstrated that: ATG5 and Beclin 1 levels were inversely associated with AMI and provided original biomarkers for AMI risk prediction. CONCLUSION: Plasma levels of autophagy regulators ATG5 and Beclin 1 represent relevant candidate biomarkers associated with AMI.

5.
Nat Rev Cardiol ; 21(5): 312-325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38163815

RESUMO

Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Macrófagos/fisiologia , Apoptose , Necrose
6.
Ageing Res Rev ; 92: 102122, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956927

RESUMO

Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.


Assuntos
Envelhecimento , Rigidez Vascular , Humanos , Envelhecimento/metabolismo , Estresse Oxidativo , Senescência Celular , Transdução de Sinais
7.
Vascul Pharmacol ; 152: 107212, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619798

RESUMO

Arterial stiffness is a hallmark of vascular ageing and results in increased blood flow pulsatility to the periphery, damaging end-organs such as the heart, kidneys and brain. Treating or "reversing" arterial stiffness has therefore become a central target in the field of vascular ageing. SGLT2 inhibitors, initially developed in the context of type 2 diabetes mellitus, have become a cornerstone of heart failure treatment. Additionally, effects on the vasculature have been reported. Here, we demonstrate that treatment with the SGLT2 inhibitor empagliflozin (7 weeks, 15 mg/kg/day) decreased ageing-induced arterial stiffness of the aorta in old mice with normal blood glucose levels. However, no universal mechanism was identified. While empagliflozin reduced the ageing-associated increase in collagen type I in the medial layer of the abdominal infrarenal aorta and decreased medial TGF-ß deposition, this was not observed in the thoracic descending aorta. Moreover, empagliflozin was not able to prevent elastin fragmentation. In conclusion, empagliflozin decreased arterial stiffness in aged mice, indicating that SGLT2 inhibition could be a valuable strategy in mitigating vascular ageing. Further research is warranted to unravel the underlying, possibly region-specific, mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Artérias , Coração , Envelhecimento , Aorta Abdominal , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
8.
Front Physiol ; 14: 1218924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637147

RESUMO

Due to its viscoelastic properties, the aorta aids in dampening blood pressure pulsatility. At the level of resistance-arteries, the pulsatile flow will be transformed into a continuous flow to allow for optimal perfusion of end organs such as the kidneys and the brain. In this study, we investigated the ex vivo viscoelastic properties of different regions of the aorta of healthy C57Bl6/J adult mice as well as the interplay between (altered) cyclic stretch and viscoelasticity. We demonstrated that the viscoelastic parameters increase along the distal aorta and that the effect of altered cyclic stretch is region dependent. Increased cyclic stretch, either by increased pulse pressure or pulse frequency, resulted in decreased aortic viscoelasticity. Furthermore, we identified that the vascular smooth muscle cell (VSMC) is an important modulator of viscoelasticity, as we have shown that VSMC contraction increases viscoelastic parameters by, in part, increasing elastin fiber tortuosity. Interestingly, an acute increase in stretch amplitude reverted the changes in viscoelastic properties induced by VSMC contraction, such as a decreasing contraction-induced elastin fiber tortuosity. Finally, the effects of altered cyclic stretch and VSMC contraction on viscoelasticity were more pronounced in the abdominal infrarenal aorta, compared to both the thoracic ascending and descending aorta, and were attributed to the activity and stability of VSMC focal adhesion. Our results indicate that cyclic stretch is a modulator of aortic viscoelasticity, acting on VSMC focal adhesion. Conditions of (acute) changes in cyclic stretch amplitude and/or frequency, such as physical exercise or hypertension, can alter the viscoelastic properties of the aorta.

9.
Cardiovasc Res ; 119(15): 2579-2590, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37625456

RESUMO

AIMS: Apart from cardiotoxicity, the chemotherapeutic doxorubicin (DOX) induces vascular toxicity, represented by arterial stiffness and endothelial dysfunction. Both parameters are of interest for cardiovascular risk stratification as they are independent predictors of future cardiovascular events in the general population. However, the time course of DOX-induced cardiovascular toxicity remains unclear. Moreover, current biomarkers for cardiovascular toxicity prove insufficient. Here, we longitudinally evaluated functional and molecular markers of DOX-induced cardiovascular toxicity in a murine model. Molecular markers were further validated in patient plasma. METHODS AND RESULTS: DOX (4 mg/kg) or saline (vehicle) was administered intra-peritoneally to young, male mice weekly for 6 weeks. In vivo cardiovascular function and ex vivo arterial stiffness and vascular reactivity were evaluated at baseline, during DOX therapy (Weeks 2 and 4) and after therapy cessation (Weeks 6, 9, and 15). Left ventricular ejection fraction (LVEF) declined from Week 4 in the DOX group. DOX increased arterial stiffness in vivo and ex vivo at Week 2, which reverted thereafter. Importantly, DOX-induced arterial stiffness preceded reduced LVEF. Further, DOX impaired endothelium-dependent vasodilation at Weeks 2 and 6, which recovered at Weeks 9 and 15. Conversely, contraction with phenylephrine was consistently higher in the DOX-treated group. Furthermore, proteomic analysis on aortic tissue identified increased thrombospondin-1 (THBS1) and alpha-1-antichymotrypsin (SERPINA3) at Weeks 2 and 6. Up-regulated THBS1 and SERPINA3 persisted during follow-up. Finally, THBS1 and SERPINA3 were quantified in plasma of patients. Cancer survivors with anthracycline-induced cardiotoxicity (AICT; LVEF < 50%) showed elevated THBS1 and SERPINA3 levels compared with age-matched control patients (LVEF ≥ 60%). CONCLUSIONS: DOX increased arterial stiffness and impaired endothelial function, which both preceded reduced LVEF. Vascular dysfunction restored after DOX therapy cessation, whereas cardiac dysfunction persisted. Further, we identified SERPINA3 and THBS1 as promising biomarkers of DOX-induced cardiovascular toxicity, which were confirmed in AICT patients.


Assuntos
Cardiotoxicidade , Proteômica , Humanos , Masculino , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda , Doxorrubicina/toxicidade , Biomarcadores
10.
Angiogenesis ; 26(4): 505-522, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37120604

RESUMO

Intraplaque (IP) angiogenesis is a key feature of advanced atherosclerotic plaques. Because IP vessels are fragile and leaky, erythrocytes are released and phagocytosed by macrophages (erythrophagocytosis), which leads to high intracellular iron content, lipid peroxidation and cell death. In vitro experiments showed that erythrophagocytosis by macrophages induced non-canonical ferroptosis, an emerging type of regulated necrosis that may contribute to plaque destabilization. Erythrophagocytosis-induced ferroptosis was accompanied by increased expression of heme-oxygenase 1 and ferritin, and could be blocked by co-treatment with third generation ferroptosis inhibitor UAMC-3203. Both heme-oxygenase 1 and ferritin were also expressed in erythrocyte-rich regions of carotid plaques from ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis with IP angiogenesis. The effect of UAMC-3203 (12.35 mg/kg/day) on atherosclerosis was evaluated in ApoE-/- Fbn1C1039G+/- mice fed a western-type diet (WD) for 12 weeks (n = 13 mice/group) or 20 weeks (n = 16-21 mice/group) to distinguish between plaques without and with established IP angiogenesis, respectively. A significant decrease in carotid plaque thickness was observed after 20 weeks WD (87 ± 19 µm vs. 166 ± 20 µm, p = 0.006), particularly in plaques with confirmed IP angiogenesis or hemorrhage (108 ± 35 µm vs. 322 ± 40 µm, p = 0.004). This effect was accompanied by decreased IP heme-oxygenase 1 and ferritin expression. UAMC-3203 did not affect carotid plaques after 12 weeks WD or plaques in the aorta, which typically do not develop IP angiogenesis. Altogether, erythrophagocytosis-induced ferroptosis during IP angiogenesis leads to larger atherosclerotic plaques, an effect that can be prevented by ferroptosis inhibitor UAMC-3203.


Assuntos
Aterosclerose , Ferroptose , Placa Aterosclerótica , Camundongos , Animais , Fibrilina-1/metabolismo , Apolipoproteínas E/genética , Ferritinas , Oxigenases/metabolismo , Heme/metabolismo
11.
Front Cardiovasc Med ; 10: 1279899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250026

RESUMO

Background: The discovery of novel biomarkers that improve current cardiovascular risk prediction models of acute coronary syndrome (ACS) is needed for the identification of very high-risk patients and therapeutic decision-making. Autophagy is a highly conserved catabolic mechanism for intracellular degradation of cellular components through lysosomes. The autophagy process helps maintain cardiac homeostasis and dysregulated autophagy has been described in cardiovascular conditions. Rubicon (Run domain Beclin-1-interacting and cysteine-rich domain-containing protein) is a key regulator of autophagy with a potential role in cardiac stress. Objectives: The aims of the present study were to assess whether changes in circulating Rubicon levels are associated with ACS and to evaluate the added value of Rubicon to a clinical predictive risk model. Methods and results: The study population included ACS patients (n = 100) and control subjects (n = 99) at high to very high cardiovascular risk but without known coronary event. Plasma Rubicon levels were measured in the whole study population by enzyme-linked immunosorbent assay. Multivariate logistic regression analyses established that Rubicon levels were inversely associated with ACS. A receiver operating characteristic curve analysis demonstrated that the addition of Rubicon improved the predictive performance of the model with an increased area under the curve from 0.868 to 0.896 (p = 0.038). Conclusions: Plasma levels of the autophagy regulator Rubicon are associated with ACS and provide added value to classical risk markers for ACS.

12.
Pharmaceutics ; 14(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559255

RESUMO

The antineoplastic activity of the thioredoxin reductase 1 (TrxR) inhibitor, auranofin (AF), has already been investigated in various cancer mouse models as a single drug, or in combination with other molecules. However, there are inconsistencies in the literature on the solvent, dose and administration route of AF treatment in vivo. Therefore, we investigated the solvent and administration route of AF in a syngeneic SB28 glioblastoma (GBM) C57BL/6J and a 344SQ non-small cell lung cancer 129S2/SvPasCrl (129) mouse model. Compared to daily intraperitoneal injections and subcutaneous delivery of AF via osmotic minipumps, oral gavage for 14 days was the most suitable administration route for high doses of AF (10-15 mg/kg) in both mouse models, showing no measurable weight loss or signs of toxicity. A solvent comprising 50% DMSO, 40% PEG300 and 10% ethanol improved the solubility of AF for oral administration in mice. In addition, we confirmed that AF was a potent TrxR inhibitor in SB28 GBM tumors at high doses. Taken together, our results and results in the literature indicate the therapeutic value of AF in several in vivo cancer models, and provide relevant information about AF's optimal administration route and solvent in two syngeneic cancer mouse models.

13.
Arterioscler Thromb Vasc Biol ; 42(11): 1283-1306, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134566

RESUMO

During atherosclerosis, lipid-rich plaques are formed in large- and medium-sized arteries, which can reduce blood flow to tissues. This situation becomes particularly precarious when a plaque develops an unstable phenotype and becomes prone to rupture. Despite advances in identifying and treating vulnerable plaques, the mortality rate and disability caused by such lesions remains the number one health threat in developed countries. Vulnerable, unstable plaques are characterized by a large necrotic core, implying a prominent role for necrotic cell death in atherosclerosis and plaque destabilization. Necrosis can occur accidentally or can be induced by tightly regulated pathways. Over the past decades, different forms of regulated necrosis, including necroptosis, ferroptosis, pyroptosis, and secondary necrosis, have been identified, and these may play an important role during atherogenesis. In this review, we describe several forms of necrosis that may occur in atherosclerosis and how pharmacological modulation of these pathways can stabilize vulnerable plaques. Moreover, some challenges of targeting necrosis in atherosclerosis such as the presence of multiple death-inducing stimuli in plaques and extensive cross-talk between necrosis pathways are discussed. A better understanding of the role of (regulated) necrosis in atherosclerosis and the mechanisms contributing to plaque destabilization may open doors to novel pharmacological strategies and will enable clinicians to tackle the residual cardiovascular risk that remains in many atherosclerosis patients.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Necrose , Placa Aterosclerótica/patologia , Apoptose , Lipídeos
14.
Physiol Rep ; 10(18): e15410, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117398

RESUMO

In vivo angiotensin II (AngII)-treatment is a widely used experimental model to induce cardiovascular disease and results in a high likelihood of abdominal aorta aneurysm (AAA) formation. This involves progressive and irreversible focal dilation of the abdominal aorta and induces adverse aortic connective tissue remodeling contributing to aortic wall stiffening through inflammation, elastin degradation, and collagen restructuring. Hence, the present study aimed to investigate how AAA formation in AngII-treated mice affects aortic function and biomechanics. To this end, C57Bl/6J mice were treated with AngII (1000 ng/[kg.min]) or PBS infusion for 28 days. Peripheral blood pressure, echocardiography, and aortic pulse wave velocity were measured in vivo. Thoracic aorta rings were studied ex vivo in organ chambers, while aortic vascular smooth muscle cell (VSMC) phenotype was investigated histologically. We confirmed peripheral hypertension, cardiac hypertrophy, aortic stiffening, and increased VSMC proliferation and migration after AngII-treatment. Abdominal aorta aneurysm formation was observed in 8/13 AngII-treated mice. Ex vivo thoracic aortic rings of both aneurysmal and non-aneurysmal AngII-treated mice showed high isobaric aortic stiffness, endothelial dysfunction, heightened α1 -adrenergic contractility, and altered VSMC contractile calcium signaling. However, aortic biomechanics were differently affected, with heightened α1 -adrenoreceptor mediated aortic stiffening in non-aneurysmal mice, whereas contraction-dependent stiffening was impaired in aneurysmal mice. In conclusion, although aneurysmal and non-aneurysmal 4-week AngII-treated mice displayed similar changes in aortic physiology, aortic biomechanics were dissimilarly affected.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Adrenérgicos/metabolismo , Angiotensina II/metabolismo , Animais , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Onda de Pulso
15.
Front Physiol ; 13: 874015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800344

RESUMO

Introduction and Aims: Endothelial dysfunction is recognized as a cardiovascular aging hallmark. Administration of nitric oxide synthase blocker N-Ω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) constitutes a well-known small animal model of cardiovascular aging. Despite extensive phenotypic characterization, the exact aortic function changes in L-NAME treated mice are largely unknown. Therefore, this study presents a longitudinal characterization of the aortic reactivity and biomechanical alterations in L-NAME treated C57Bl/6 mice. Methods and Results: Male C57Bl/6 mice were treated with L-NAME (0.5 mg/ml drinking water) for 1, 2, 4, 8, or 16 weeks. Peripheral blood pressure measurement (tail-cuff) and transthoracic echocardiograms were recorded, showing progressive hypertension after 4 weeks of treatment and progressive cardiac hypertrophy after 8-16 weeks of treatment. Aortic stiffness was measured in vivo as aortic pulse wave velocity (aPWV, ultrasound) and ex vivo as Peterson modulus (Ep). Aortic reactivity and biomechanics were investigated ex vivo in thoracic aortic rings, mounted isometrically or dynamically-stretched in organ bath set-ups. Aortic stiffening was heightened in L-NAME treated mice after all treatment durations, thereby preceding the development of hypertension and cardiac aging. L-NAME treatment doubled the rate of arterial stiffening compared to control mice, and displayed an attenuation of the elevated aortic stiffness at high distending pressure, possibly due to late-term reduction of medial collagen types I, III, and IV content. Remarkably, endothelial dysfunction, measured by acetylcholine concentration-response stimulation in precontracted aortic rings, was only observed after short-term (1-4 weeks) treatment, followed by restoration of endothelial function which coincided with increased phosphorylation of endothelial nitric oxide synthase (S1177). In the late-disease phase (8-16 weeks), vascular smooth muscle cell (VSMC) dysfunction developed, including increased contribution of voltage-dependent calcium channels (assessed by inhibition with diltiazem), basal VSMC cytoplasmic calcium loading (assessed by removal of extracellular calcium), and heightened intracellular contractile calcium handling (assessed by measurement of sarcoplasmic reticulum-mediated transient contractions). Conclusion: Arterial stiffness precedes peripheral hypertension and cardiac hypertrophy in chronic L-NAME treated male C57Bl/6 mice. The underlying aortic disease mechanisms underwent a distinct shift from early endothelial dysfunction to late-term VSMC dysfunction, with continued disease progression.

16.
Commun Biol ; 5(1): 605, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710942

RESUMO

Aortic stiffness is a hallmark of cardiovascular disease, but its pathophysiology remains incompletely understood. This study presents an in-dept characterization of aortic aging in male C57Bl/6 mice (2-24 months). Cardiovascular measurements include echocardiography, blood pressure measurement, and ex vivo organ chamber experiments. In vivo and ex vivo aortic stiffness increases with age, and precede the development of cardiac hypertrophy and peripheral blood pressure alterations. Contraction-independent stiffening (due to extracellular matrix changes) is pressure-dependent. Contraction-dependent aortic stiffening develops through heightened α1-adrenergic contractility, aberrant voltage-gated calcium channel function, and altered vascular smooth muscle cell calcium handling. Endothelial dysfunction is limited to a modest decrease in sensitivity to acetylcholine-induced relaxation with age. Our findings demonstrate that progressive arterial stiffening in C57Bl/6 mice precedes associated cardiovascular disease. Aortic aging is due to changes in extracellular matrix and vascular smooth muscle cell signalling, and not to altered endothelial function.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Envelhecimento , Animais , Matriz Extracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular , Rigidez Vascular/fisiologia
17.
Front Physiol ; 13: 882527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574444

RESUMO

Introduction and Aims: Endothelial nitric oxide synthase (eNOS) knockout mice develop pronounced cardiovascular disease. In the present study, we describe the alterations in aortic physiology and biomechanics of eNOS knockout and C57Bl/6 control mice at 2-12 months of age, including a thorough physiological investigation of age and cyclic stretch-dependent VSMC contractility and aortic stiffness. Methods and Results: Peripheral blood pressure and aortic pulse wave velocity were measured in vivo, and aortic biomechanical studies and isometric contractions were investigated ex vivo. Age-dependent progression of aortic stiffness, peripheral hypertension, and aortic contractility in eNOS knockout mice was absent, attenuated, or similar to C57Bl/6 control mice. Voltage-gated calcium channel (VGCC)-dependent calcium influx inversely affected isometric contraction and aortic stiffening by α1-adrenergic stimulation in eNOS knockout mice. Baseline aortic stiffness was selectively reduced in eNOS knockout mice after ex vivo cyclic stretch exposure in an amplitude-dependent manner, which prompted us to investigate cyclic stretch dependent regulation of aortic contractility and stiffness. Aortic stiffness, both in baseline conditions and after activation of vascular smooth muscle cell (VSMC) contraction, was reduced with increasing cyclic stretch amplitude. This cyclic stretch dependency was attenuated with age, although aged eNOS knockout mice displayed better preservation of cyclic stretch-dependency compared to C57Bl/6 control mice. Store operated calcium entry-medicated aortic stiffening as induced by inhibiting sarcoplasmic reticulum calcium ATPase pumps with 10 µM CPA was most pronounced in the aorta of aged mice and at low cyclic stretch amplitude, but independent of eNOS. Basal aortic tonus and VSMC depolarization were highly dependent on eNOS, and were most pronounced at low cyclic stretch, with attenuation at increasing cyclic stretch amplitude. Conclusion: eNOS knockout mice display attenuated progression of arterial disease as compared to C57Bl/6 control mice. Basal VSMC tone in eNOS knockout mice could be reduced by ex vivo exposure to cyclic stretch through stretch-dependent regulation of cytosolic calcium. Both baseline and active aortic stiffness were highly dependent on cyclic stretch regulation, which was more pronounced in young versus aged mice. Other mediators of VSMC contraction and calcium handling were dependent on cyclic stretch mechanotransduction, but independent of eNOS.

18.
Biomedicines ; 10(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35625752

RESUMO

RIPK1 (receptor-interacting serine/threonine-protein kinase 1) enzymatic activity drives both apoptosis and necroptosis, a regulated form of necrosis. Because necroptosis is involved in necrotic core development in atherosclerotic plaques, we investigated the effects of a RIPK1S25D/S25D mutation, which prevents activation of RIPK1 kinase, on atherogenesis in ApoE-/- mice. After 16 weeks of western-type diet (WD), atherosclerotic plaques from ApoE-/- RIPK1S25D/S25D mice were significantly larger compared to ApoE-/- RIPK1+/+ mice (167 ± 34 vs. 78 ± 18 × 103 µm2, p = 0.01). Cell numbers (350 ± 34 vs. 154 ± 33 nuclei) and deposition of glycosaminoglycans (Alcian blue: 31 ± 6 vs. 14 ± 4%, p = 0.023) were increased in plaques from ApoE-/- RIPK1S25D/S25D mice while macrophage content (Mac3: 2.3 ± 0.4 vs. 9.8 ± 2.4%, p = 0.012) was decreased. Plaque apoptosis was not different between both groups. In contrast, pharmacological inhibition of RIPK1 kinase with GSK'547 (10 mg/kg BW/day) in ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis, did not alter plaque size after 20 weeks WD, but induced apoptosis (TUNEL: 136 ± 20 vs. 62 ± 9 cells/mm2, p = 0.004). In conclusion, inhibition of RIPK1 kinase activity accelerated plaque progression in ApoE-/- RIPK1S25D/S25D mice and induced apoptosis in GSK'547-treated ApoE-/- Fbn1C1039G+/- mice. Thus, without directly comparing the genetic and pharmacological studies, it can be concluded that targeting RIPK1 kinase activity does not limit atherogenesis.

19.
Biomedicines ; 10(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625908

RESUMO

Gasdermin D (GSDMD) is the key executor of pyroptotic cell death. Recent studies suggest that GSDMD-mediated pyroptosis is involved in atherosclerotic plaque destabilization. We report that cleaved GSDMD is expressed in macrophage- and smooth muscle cell-rich areas of human plaques. To determine the effects of GSDMD deficiency on atherogenesis, ApoE-/- Gsdmd-/- (n = 16) and ApoE-/-Gsdmd+/+ (n = 18) mice were fed a western-type diet for 16 weeks. Plaque initiation and formation of stable proximal aortic plaques were not altered. However, plaques in the brachiocephalic artery (representing more advanced lesions compared to aortic plaques) of ApoE-/- Gsdmd-/- mice were significantly smaller (115 ± 18 vs. 186 ± 16 × 103 µm2, p = 0.006) and showed features of increased stability, such as decreased necrotic core area (19 ± 4 vs. 37 ± 7 × 103 µm2, p = 0.03) and increased αSMA/MAC3 ratio (1.6 ± 0.3 vs. 0.7 ± 0.1, p = 0.01), which was also observed in proximal aortic plaques. Interestingly, a significant increase in TUNEL positive cells was observed in brachiocephalic artery plaques from ApoE-/- Gsdmd-/- mice (141 ± 25 vs. 62 ± 8 cells/mm2, p = 0.005), indicating a switch to apoptosis. This switch from pyroptosis to apoptosis was also observed in vitro in Gsdmd-/- macrophages. In conclusion, targeting GSDMD appears to be a promising approach for limiting the transition to an inflammatory, vulnerable plaque phenotype.

20.
J Physiol Sci ; 72(1): 7, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277137

RESUMO

The physiology of vascular smooth muscle (VSMC) cells is affected by autophagy, a catabolic cellular mechanism responsible for nutrient recycling. Autophagy-inducing compounds may reverse arterial stiffening, whereas congenital VSMC-specific autophagy deficiency promotes arterial stiffening. The elevated aortic stiffness in 3.5-month-old C57Bl/6 mice, in which the essential autophagy-related gene Atg7 was specifically deleted in the VSMCs (Atg7F/F SM22α-Cre+ mice) was mainly due to passive aortic wall remodeling. The present study investigated whether aortic stiffness was also modulated by a shorter duration of autophagy deficiency. Therefore, aortic segments of 2-month-old Atg7F/F SM22α-Cre+ mice were studied. Similarly to the older mice, autophagy deficiency in VSMCs promoted aortic stiffening by elastin degradation and elastin breaks, and increased the expression of the calcium binding protein S100A4 (+ 157%), the aortic wall thickness (+ 27%), the sensitivity of the VSMCs to depolarization and the contribution of VGCC mediated Ca2+ influx to α1 adrenergic contractions. Hence, all these phenomena occurred before the age of 2 months. When compared to autophagy deficiency in VSMCs at 3.5 months, shorter term autophagy deficiency led to higher segment diameter at 80 mmHg (+ 7% versus - 2%), normal baseline tonus (versus increased), unchanged IP3-mediated phasic contractions (versus enhanced), and enhanced endothelial cell function (versus normal). Overall, and because in vivo cardiac parameters or aortic pulse wave velocity were not affected, these observations indicate that congenital autophagy deficiency in VSMCs of Atg7F/F SM22α-Cre+ mice initiates compensatory mechanisms to maintain circulatory homeostasis.


Assuntos
Músculo Liso Vascular , Análise de Onda de Pulso , Animais , Autofagia/fisiologia , Fenômenos Biomecânicos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...