Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
RSC Adv ; 14(26): 18343-18354, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38915881

RESUMO

This work implements computational chemistry as a screening tool to aid in the coating and resin formulation process. Conceptual Density Functional theory (DFT) reactivity descriptors like the global chemical hardness and the dual descriptor Fukui function identify the tendency of polyester-melamine coatings to undergo electrophilic and nucleophilic attack during weathering exposure. Coatings were subjected to natural and accelerated weathering tests, with periodic infrared spectroscopy, colour, and gloss measurements to assess for the degree of changes brought about through photodegradation. It was found that the number of attack sites in the atomistic models, when weighted as a function of the polyester : crosslinker ratio, effectively ranked the degradation of different coating systems upon weathering. This ranking matched the performance of the coatings subjected to both accelerated and natural weathering, showing affinity with naturally weathered samples, and matching in all areas. The results were shown to demonstrate significant correlation, being over R 2 = 0.8 for 7 of the 8 measured areas, and greater than R 2 = 0.9 for 6 compared areas. Comparison of computationally derived and experimentally acquired results showed that the performance of naturally weathered samples was matched across all areas by the computational rankings, showing superior correlation than that observed between natural and accelerated weathering tests. This indicates that the method utilised within this work provides a novel, cost-effective alternative to evaluate the projected performance of selected coatings, while enabling a computationally accelerated platform for more sustainable low-degradation coatings without the requirement of long-term weathering tests.

2.
Psychophysiology ; 61(6): e14544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351668

RESUMO

Predictive coding framework posits that our brain continuously monitors changes in the environment and updates its predictive models, minimizing prediction errors to efficiently adapt to environmental demands. However, the underlying neurophysiological mechanisms of these predictive phenomena remain unclear. The present study aimed to explore the systemic neurophysiological correlates of predictive coding processes during passive and active auditory processing. Electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and autonomic nervous system (ANS) measures were analyzed using an auditory pattern-based novelty oddball paradigm. A sample of 32 healthy subjects was recruited. The results showed shared slow evoked potentials between passive and active conditions that could be interpreted as automatic predictive processes of anticipation and updating, independent of conscious attentional effort. A dissociated topography of the cortical hemodynamic activity and distinctive evoked potentials upon auditory pattern violation were also found between both conditions, whereas only conscious perception leading to imperative responses was accompanied by phasic ANS responses. These results suggest a systemic-level hierarchical reallocation of predictive coding neural resources as a function of contextual demands in the face of sensory stimulation. Principal component analysis permitted to associate the variability of some of the recorded signals.


Assuntos
Percepção Auditiva , Eletroencefalografia , Potenciais Evocados Auditivos , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Sistema Nervoso Autônomo/fisiologia , Córtex Cerebral/fisiologia , Antecipação Psicológica/fisiologia , Atenção/fisiologia
3.
NPJ Vaccines ; 9(1): 10, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184681

RESUMO

The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates.

4.
Cell Host Microbe ; 31(12): 2080-2092.e5, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38056460

RESUMO

Vivax malaria has long been thought to be absent from sub-Saharan Africa owing to the high proportion of individuals lacking the Duffy antigen receptor for chemokines (DARC) in their erythrocytes. The interaction between P. vivax Duffy-binding protein (PvDBP) and DARC is assumed to be the main pathway used by merozoites to invade reticulocytes. However, the increasing number of reports of vivax malaria cases in genotypically Duffy-negative (DN) individuals has raised questions regarding the P. vivax invasion pathway(s). Here, we show that a subset of DN erythroblasts transiently express DARC during terminal erythroid differentiation and that P. vivax merozoites, irrespective of their origin, can invade DARC+ DN erythroblasts. These findings reveal that a large number of DN individuals may represent a silent reservoir of deep P. vivax infections at the sites of active erythropoiesis with low or no parasitemia, and it may represent an underestimated biological problem with potential clinical consequences in sub-Saharan Africa.


Assuntos
Malária Vivax , Humanos , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Plasmodium vivax/metabolismo , Eritrócitos , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/metabolismo
5.
Trop Anim Health Prod ; 55(5): 297, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723380

RESUMO

Charolais is one of the most important beef cattle breeds in the world. In Mexico, it was introduced almost a century ago, and it has been suggested that particular breeding management and genetic material origin have caused a process of divergence among the current population. By a high-density SNP array genome-wide analysis, this study aimed to assess the proposed differentiation and population structure of local populations by genetic distances and structure approaches, and a European Charolais sample was included as a reference population. The differentiation statistics indicated that local populations exhibit moderate divergence, confirming a significant differentiation process between northeastern and northwestern Charolais populations (Fst≥ 0.043, D≥ 0.031). These results were strongly supported by PCA and structure analysis. Genetic isolation and low genetic flow between populations and divergent origins of introduced genetic material (i.e., semen) are likely the main drivers of the outcomes. Some implications are discussed.


Assuntos
Líquidos Corporais , Animais , Bovinos/genética , México , Sêmen
6.
Sci Rep ; 13(1): 13904, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626150

RESUMO

The invasion of reticulocytes by Plasmodium vivax merozoites is dependent on the interaction of the Plasmodium vivax Duffy Binding Protein (PvDBP) with the Duffy antigen receptor for chemokines (DARC). The N-terminal cysteine-rich region II of PvDBP (PvDBPII), which binds DARC, is a leading P. vivax malaria vaccine candidate. Here, we have evaluated the immunogenicity of recombinant PvDBPII formulated with the adjuvants Matrix-M and GLA-SE in mice. Analysis of the antibody responses revealed comparable ELISA recognition titres as well as similar recognition of native PvDBP in P. vivax schizonts by immunofluorescence assay. Moreover, antibodies elicited by the two adjuvant formulations had similar functional properties such as avidity, isotype profile and inhibition of PvDBPII-DARC binding. Furthermore, the anti-PvDBPII antibodies were able to block the interaction of DARC with the homologous PvDBPII SalI allele as well as the heterologous PvDBPII PvW1 allele from a Thai clinical isolate that is used for controlled human malaria infections (CHMI). The cross-reactivity of these antibodies with PvW1 suggest that immunization with the PvDBPII SalI strain should neutralize reticulocyte invasion by the challenge P. vivax strain PvW1.


Assuntos
Malária Vivax , Vacinas , Humanos , Animais , Camundongos , Plasmodium vivax , Proteínas de Transporte , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Anticorpos , Malária Vivax/prevenção & controle
7.
Heliyon ; 9(7): e18271, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539099

RESUMO

Natural ventilation in low-budget elementary schools is the main focus to ensure the health and comfort of its occupants, specifically when looking at the global pandemic related to SARS-COV-2. This paper presents an experimental and novel study of natural ventilation in a public elementary school (Los Zumacales), with a particularly low economic budget. The study was carried out during the winter months of the Covid 19 pandemic. The school is located in the rural area of Castilla y León (North-Western Spain) far from high traffic roads. In this study, a methodology of measuring CO2 concentration was applied in nine classrooms in a school. The experimental study shows the level of natural ventilation in each classroom, expressed in Air Changes per Hour (ACH), using the Decay CO2 concentration method. The method is proven by comparing the experimental values of the obtained ACH with those determined by the most powerful methods to achieve appropriate ventilation levels. Thus, ensuring health protection protocol in rural schools, against the COVID 19 pandemic. Harvard guide and Spanish regulations (RITE), two widely recognized methods have been used together with the experimentally obtained standard by Rey et al. Only one classroom showed a value lower than 3 indicating poor ventilation. In this study, the degree of thermal comfort in the nine classrooms were also analyzed according to the EN15251 standard. An average indoor temperature of approximately 19 °C was obtained, and the relative humidity was stable and correct according to Spanish regulations. In addition, the risk of infection in each classroom was estimated following the international method recommended by the federation of European Heating, Ventilation, and Air Conditioning Associations (REHVA). The probability of infection in all the cases studied was less than 14%. Therefore, this study provides a strong response against infections illnesses, such as Covid 19, in educational buildings where economic budgets of their facilities are low in both, maintenance and investment.

8.
Sci Transl Med ; 15(704): eadf1782, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437014

RESUMO

There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine.


Assuntos
Malária , Parasitos , Humanos , Animais , Plasmodium vivax , Vacinação
10.
Brain Topogr ; 36(5): 736-749, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330940

RESUMO

This study analyses the spontaneous electroencephalogram (EEG) brain activity of 14 children diagnosed with Autism Spectrum Disorder (ASD) compared to 18 children with normal development, aged 5-11 years. (i) Power Spectral Density (PSD), (ii) variability across trials (coefficient of variation: CV), and (iii) complexity (multiscale entropy: MSE) of the brain signal analysis were computed on the resting state EEG. PSD (0.5-45 Hz) and CV were averaged over different frequency bands (low-delta, delta, theta, alpha, low-beta, high-beta and gamma). MSE were calculated with a coarse-grained procedure on 67 time scales and divided into fine, medium and coarse scales. In addition, significant neurophysiological variables were correlated with behavioral performance data (Kaufman Brief Intelligence Test (KBIT) and Autism Spectrum Quotient (AQ)). Results show increased PSD fast frequency bands (high-beta and gamma), higher variability (CV) and lower complexity (MSE) in children with ASD when compared to typically developed children. These results suggest a more variable, less complex and, probably, less adaptive neural networks with less capacity to generate optimal responses in ASD children.


Assuntos
Transtorno do Espectro Autista , Humanos , Criança , Eletroencefalografia/métodos , Encéfalo , Entropia
11.
iScience ; 26(4): 106549, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123246

RESUMO

A transition from a linear to a circular economy is the only alternative to reduce current pressures in natural resources. Our society must redefine our material sources, rethink our supply chains, improve our waste management, and redesign materials and products. Valorizing extensively available biomass wastes, as new carbon mines, and developing biobased materials that mimic nature's efficiency and wasteless procedures are the most promising avenues to achieve technical solutions for the global challenges ahead. Advances in materials processing, and characterization, as well as the rise of artificial intelligence, and machine learning, are supporting this transition to a new materials' mining. Location, cultural, and social aspects are also factors to consider. This perspective discusses new alternatives for carbon mining in biomass wastes, the valorization of biomass using available processing techniques, and the implementation of computational modeling, artificial intelligence, and machine learning to accelerate material's development and process engineering.

13.
Teach Learn Med ; 35(5): 589-600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35770421

RESUMO

ProblemIn the US, there are neither professional standards nor adequate formal training opportunities related to physician use of non-English languages, the most common of which is Spanish. To achieve safe, effective health care for culturally and linguistically diverse patients, the medical profession needs clear standards for physician language use and proven culture and language training models that include validated assessment of linguistic proficiency. InterventionThe authors describe the first decade of an innovative culture and language coaching program for bilingual (Spanish-English) pediatric residents, including the model's evolution and outcomes, as well as recommendations for implementing similar programs elsewhere. Over 10 years, the model has grown from a central innovation-the professional culture and language coach (CLC). The CLC provides 1:1 in-visit support and post-visit coaching to individual residents during three years of continuity clinic experience in a Spanish-language setting (Clínica Hispana de Cuidados de Salud-CHiCoS). They also provide a range of supplementary learning activities (e.g., simulations, immersion rotations, mock testing) and periodic formal assessment of language proficiency. Foundational program elements include cultural and linguistic humility, variations in language, pragmatic linguistics and trans-languaging, the inseparability of culture and language, health literacy, and a flat teaching hierarchy ("all teach, all learn"). ContextCHiCoS has been implemented continuously since 2009 in the primary care clinic of a stand-alone academic pediatric hospital in the Midwest, where pediatric residents have their continuity clinic experience over three years of residency. ImpactFifty-six residents have participated, reporting improved language skills, cultural knowledge, and ability to care for Spanish-speaking patients. Sixty-eight percent of residents not qualified bilingual upon program entry passed a validated physician language assessment by graduation. Spanish-speaking patients seen by CHiCoS residents and faculty reported higher satisfaction, trust, and communication scores than those seen in non-bilingual areas of the same clinic (p < .05 for all scores). The program increased bilingual faculty six-fold and changed attitudes and practices related to language supports throughout the residency program. Lessons LearnedCulture and language coaching provides effective preparation and assessment of bilingual physicians, leading to improved care for culturally and linguistically diverse patients. Our model offers an example for developing similar approaches for a variety of clinicians throughout health care. Such approaches should include professional standards for non-English language use, training supports customized to bilingual learners' proficiency levels, and a focus on integrating practical cultural and linguistic skills to achieve safe, effective clinical communication.


Assuntos
Internato e Residência , Tutoria , Multilinguismo , Médicos , Humanos , Criança , Idioma , Aprendizagem
14.
Front Chem ; 10: 973417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438874

RESUMO

Climate change, socioeconomical pressures, and new policy and legislation are driving a decarbonization process across industries, with a critical shift from a fossil-based economy toward a biomass-based one. This new paradigm implies not only a gradual phasing out of fossil fuels as a source of energy but also a move away from crude oil as a source of platform chemicals, polymers, drugs, solvents and many other critical materials, and consumer goods that are ubiquitous in our everyday life. If we are to achieve the United Nations' Sustainable Development Goals, crude oil must be substituted by renewable sources, and in this evolution, biorefineries arise as the critical alternative to traditional refineries for producing fuels, chemical building blocks, and materials out of non-edible biomass and biomass waste. State-of-the-art biorefineries already produce cost-competitive chemicals and materials, but other products remain challenging from the economic point of view, or their scaled-up production processes are still not sufficiently developed. In particular, lignin's depolymerization is a required milestone for the success of integrated biorefineries, and better catalysts and processes must be improved to prepare bio-based aromatic simple molecules. This review summarizes current challenges in biorefinery systems, while it suggests possible directions and goals for sustainable development in the years to come.

15.
J Clin Med ; 11(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36233515

RESUMO

Open-angle glaucoma (OAG), the most prevalent clinical type of glaucoma, is still the main cause of irreversible blindness worldwide. OAG is a neurodegenerative illness for which the most important risk factor is elevated intraocular pressure (IOP). Many questions remain unanswered about OAG, such as whether nutritional or toxic habits, other personal characteristics, and/or systemic diseases influence the course of glaucoma. As such, in this study, we performed a multicenter analytical, observational, case-control study of 412 participants of both sexes, aged 40-80 years, that were classified as having ocular hypertension (OHT) or OAG. Our primary endpoint was to investigate the relationship between specific lifestyle habits; anthropometric and endocrine-metabolic, cardiovascular, and respiratory events; and commonly used psychochemicals, with the presence of OHT or OAG in an ophthalmologic population from Spain and Portugal. Demographic, epidemiological, and ocular/systemic clinical data were recorded from all participants. Data were analyzed using the R Statistics v4.1.2 and RStudio v2021.09.1 programs. The mean age was 62 ± 15 years, with 67-80 years old comprising the largest subgroup sample of participants in both study groups. The central corneal thickness (ultrasound pachymetry)-adjusted IOP (Goldman tonometry) in each eye was 20.46 ± 2.35 and 20.1 ± 2.73 mmHg for the OHT individuals, and 15.8 ± 3.83 and 16.94 ± 3.86 mmHg for the OAG patients, with significant differences between groups (both p = 0.001). The highest prevalence of the surveyed characteristics in both groups was for overweight/obesity and daily coffee consumption, followed by psychochemical drug intake, migraine, and peripheral vasospasm. Our data show that overweight/obesity, migraine, asthma, and smoking are major risk factors for conversion from OHT to OAG in this Spanish and Portuguese population.

17.
medRxiv ; 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35664997

RESUMO

Background: There are no licensed vaccines against Plasmodium vivax , the most common cause of malaria outside of Africa. Methods: We conducted two Phase I/IIa clinical trials to assess the safety, immunogenicity and efficacy of two vaccines targeting region II of P. vivax Duffy-binding protein (PvDBPII). Recombinant viral vaccines (using ChAd63 and MVA vectors) were administered at 0, 2 months or in a delayed dosing regimen (0, 17, 19 months), whilst a protein/adjuvant formulation (PvDBPII/Matrix-M™) was administered monthly (0, 1, 2 months) or in a delayed dosing regimen (0, 1, 14 months). Delayed regimens were due to trial halts during the COVID-19 pandemic. Volunteers underwent heterologous controlled human malaria infection (CHMI) with blood-stage P. vivax parasites at 2-4 weeks following their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparison of parasite multiplication rate (PMR) in blood post-CHMI, modelled from parasitemia measured by quantitative polymerase-chain-reaction (qPCR). Results: Thirty-two volunteers were enrolled and vaccinated (n=16 for each vaccine). No safety concerns were identified. PvDBPII/Matrix-M™, given in the delayed dosing regimen, elicited the highest antibody responses and reduced the mean PMR following CHMI by 51% (range 36-66%; n=6) compared to unvaccinated controls (n=13). No other vaccine or regimen impacted parasite growth. In vivo growth inhibition of blood-stage P. vivax correlated with functional antibody readouts of vaccine immunogenicity. Conclusions: Vaccination of malaria-naïve adults with a delayed booster regimen of PvDBPII/ Matrix-M™ significantly reduces the growth of blood-stage P. vivax . Funded by the European Commission and Wellcome Trust; VAC069, VAC071 and VAC079 ClinicalTrials.gov numbers NCT03797989 , NCT04009096 and NCT04201431 .

18.
Molecules ; 27(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744802

RESUMO

Intramolecular charge transfer (ICT) effects are responsible for the photoluminescent properties of coumarins. Hence, optical properties with different applications can be obtained by ICT modulation. Herein, four 3-acetyl-2H-chromen-2-ones (1a-d) and their corresponding fluorescent hybrids 3- (phenylhydrazone)-chromen-2-ones (2a-d) were synthesized in 74-65% yields. The UV-Vis data were in the 295-428 nm range. The emission depends on the substituent in position C-7 bearing electron-donating groups. Compounds 1b-d showed good optical properties due to the D-π-A structural arrangement. In compounds 2a-d, there is a quenching effect of fluorescence in solution. However, in the solid, an increase is shown due to an aggregation-induced emission (AIE) effect given by the rotational restraints and stacking in the crystal. Computational calculations of the HOMO-LUMO orbitals indicate high absorbance and emission values of the molecules, and gap values represent the bathochromic effect and the electronic efficiency of the compounds. Compounds 1a-d and 2a-d are good candidates for optical applications, such as OLEDs, organic solar cells, or fluorescence markers.


Assuntos
Cumarínicos , Elétrons , Cumarínicos/química , Teoria da Densidade Funcional , Espectrometria de Fluorescência
19.
Pharmaceuticals (Basel) ; 15(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35745608

RESUMO

Breast cancer (BC) is the most frequently diagnosed cancer and is the second-most common cause of death in women worldwide. Because of this, the search for new drugs and targeted therapy to treat BC is an urgent and global need. Histone deacetylase 6 (HDAC6) is a promising anti-BC drug target associated with its development and progression. In the present work, the design and synthesis of a new family of dihydropyrazole-carbohydrazide derivatives (DPCH) derivatives focused on HDAC6 inhibitory activity is presented. Computational chemistry approaches were employed to rationalize the design and evaluate their physicochemical and toxic-biological properties. The new family of nine DPCH was synthesized and characterized. Compounds exhibited optimal physicochemical and toxicobiological properties for potential application as drugs to be used in humans. The in silico studies showed that compounds with -Br, -Cl, and -OH substituents had good affinity with the catalytic domain 2 of HDAC6 like the reference compounds. Nine DPCH derivatives were assayed on MCF-7 and MDA-MB-231 BC cell lines, showing antiproliferative activity with IC50 at µM range. Compound 2b showed, in vitro, an IC50 value of 12 ± 3 µM on human HDAC6. The antioxidant activity of DPCH derivatives showed that all the compounds exhibit antioxidant activity similar to that of ascorbic acid. In conclusion, the DPCH derivatives are promising drugs with therapeutic potential for the epigenetic treatment of BC, with low cytotoxicity towards healthy cells and important antioxidant activity.

20.
ACS Appl Mater Interfaces ; 14(27): 31296-31311, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35772026

RESUMO

Asphalt pavements and bituminous composites are majorly damaged by bitumen aging and fatigue cracking by traffic load. To add, maintenance and reparation of asphalt pavements is expensive and also releases significant amounts of greenhouse gases. These issues can be mitigated by promoting asphalt self-healing mechanisms with encapsulated rejuvenators. The ability of the required microcapsules to be resilient against high temperatures, oxidation, and mechanical stress is essential to promote such self-healing behavior without compromising the field performance of the asphalt pavement. This work proposes, for the first time, the use of extremely resistant biobased spores for the encapsulation of recycled oil-based rejuvenators to produce more resilient self-healing pavements. Spore encapsulants were obtained from natural spores (Lycopodium clavatum) by applying different chemical treatments, which enabled the selection of the best morphologically intact and clean spore encapsulant. The physical, morphological, and physicochemical changes were examined using fluorescence images, ATR-FTIR, SEM, size distribution, XRD, TGA and DSC analyses. Sunflower oil was used as the encapsulated rejuvenator with an optimal sol colloidal mixture for sporopollenin-oil of 1:5 (gram-to-gram). Vacuum, passive, and centrifugal encapsulation techniques were tested for loading the rejuvenator inside the clean spores and for selecting the best encapsulation technology. The encapsulation efficiency and the profiles of the accelerated release of the rejuvenator from the loaded spores over time were studied, and these processes were visualized with optical and inverted fluorescence microscopy. Vacuum encapsulation was identified as the best loading technique with an encapsulation efficiency of 93.02 ± 3.71%. The rejuvenator was successfully encapsulated into the clean spores, as observed by optical and SEM morphologies. In agreement with the TGA and DSC, the microcapsules were stable up to 204 °C. Finally, a self-healing test was conducted through fluorescence tests to demonstrate how these biobased spore microcapsules completely heal a crack into an aged bitumen sample in 50 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...