Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39143905

RESUMO

Unfortunately, during pathological conditions resulting in chronic hemolysis cell-free hemoglobin (Hb) is released into the circulation which releases free heme, resulting in several complications. One approach to prevent these toxicities is administration of supplemental scavenger proteins, haptoglobin (Hp) and hemopexin (Hpx). The goal of this body of work is to objectively measure levels of vascular reactivity and inflammatory profiles after an infusion of acellular hemoglobin in animals that were given a co-administration of PEGylated human apohemoglobin (PEG-apoHb), a hemopexin (Hpx)-mimetic that can scavenge free heme from hemoglobin, together with human plasma-derived Hp that can scavenge dimerized Hb. Utilizing intravital microscopy, Golden Syrian hamsters instrumented with a dorsal window chamber were used to evaluate the in vivo effects of 4 experimental groups that were then challenged with a hypovolemic injection (10% of the animal's blood volume) of human Hb (hHb, 5 g/dL). The four experimental groups consisted of: 1) lactated Ringer's (control), 2) PEG-apoHb only, 3) Hp only, and 4) PEG-apoHb + Hp. The microvascular hemodynamics (diameter and flow) in arterioles and venules were recorded at baseline, 20 minutes after treatment, and 20 minutes after hHb challenge. Systemic parameters (blood pressure and heart rate), blood gases (pH, pCO2, and pO2), blood parameters (Hb concentration and hematocrit), and multiorgan functionality/ inflammation were also measured. Our results suggest that co-administration of PEG-apoHb + Hp as a booster prior to the infusion of acellular hemoglobin significantly prevented vasoconstriction in the microcirculation, significantly increased the number of functional capillaries, and significantly reduced inflammation.

2.
Biomed Pharmacother ; 174: 116569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603886

RESUMO

Alpha-alpha diaspirin-crosslinked human hemoglobin (DCLHb or ααHb) was a promising early generation red blood cell (RBC) substitute. The DCLHb was developed through a collaborative effort between the United States Army and Baxter Healthcare. The core design feature underlying its development was chemical stabilization of the tetrameric structure of hemoglobin (Hb) to prevent Hb intravascular dimerization and extravasation. DCLHb was developed to resuscitate warfighters on the battlefield, who suffered from life-threatening blood loss. However, extensive research revealed toxic side effects associated with the use of DCLHb that contributed to high mortality rates in clinical trials. This study explores whether scavenging Hb and heme via the apohemoglobin-haptoglobin (apoHb-Hp) complex can reduce DCLHb associated toxicity. Awake Golden Syrian hamsters were equipped with a window chamber model to characterize the microcirculation. Each group was first infused with either Lactated Ringer's or apoHb-Hp followed by a hypovolemic infusion of 10% of the animal's blood volume of DCLHb. Our results indicated that animals pretreated with apoHb-Hb exhibited improved microhemodynamics vs the group pretreated with Lactated Ringer's. While systemic acute inflammation was observed regardless of the treatment group, apoHb-Hp pretreatment lessened those effects with a marked reduction in IL-6 levels in the heart and kidneys compared to the control group. Taken together, this study demonstrated that utilizing a Hb and heme scavenger protein complex significantly reduces the microvasculature effects of ααHb, paving the way for improved HBOC formulations. Future apoHb-Hp dose optimization studies may identify a dose that can completely neutralize DCLHb toxicity.


Assuntos
Haptoglobinas , Hemoglobinas , Animais , Hemoglobinas/farmacologia , Hemoglobinas/metabolismo , Humanos , Haptoglobinas/metabolismo , Masculino , Mesocricetus , Apoproteínas/química , Apoproteínas/farmacologia , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/química , Reagentes de Ligações Cruzadas/química , Cricetinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA