Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793666

RESUMO

SARS-CoV-2 primarily infects the lungs via the ACE2 receptor but also other organs including the kidneys, the gastrointestinal tract, the heart, and the skin. SARS-CoV-2 also infects the brain, but the hematogenous route of viral entry to the brain is still not fully characterized. Understanding how SARS-CoV-2 traverses the blood-brain barrier (BBB) as well as how it affects the molecular functions of the BBB are unclear. In this study, we investigated the roles of the receptors ACE2 and DPP4 in the SARS-CoV-2 infection of the discrete cellular components of a transwell BBB model comprising HUVECs, astrocytes, and pericytes. Our results demonstrate that direct infection on the BBB model does not modulate paracellular permeability. Also, our results show that SARS-CoV-2 utilizes clathrin and caveolin-mediated endocytosis to traverse the BBB, resulting in the direct infection of the brain side of the BBB model with a minimal endothelial infection. In conclusion, the BBB is susceptible to SARS-CoV-2 infection in multiple ways, including the direct infection of endothelium, astrocytes, and pericytes involving ACE2 and/or DPP4 and the blood-to-brain transcytosis, which is an event that does not require the presence of host receptors.


Assuntos
Enzima de Conversão de Angiotensina 2 , Astrócitos , Barreira Hematoencefálica , COVID-19 , Dipeptidil Peptidase 4 , Pericitos , SARS-CoV-2 , Transcitose , Internalização do Vírus , Barreira Hematoencefálica/virologia , Barreira Hematoencefálica/metabolismo , Humanos , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Pericitos/virologia , Pericitos/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Astrócitos/virologia , Astrócitos/metabolismo , Dipeptidil Peptidase 4/metabolismo , Encéfalo/virologia , Encéfalo/metabolismo , Endocitose , Células Endoteliais da Veia Umbilical Humana/virologia , Permeabilidade
2.
J Nutr ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735572

RESUMO

BACKGROUND: The gut microbiota contributes to metabolic disease, and diet shapes the gut microbiota, emphasizing the need to better understand how diet impacts metabolic disease via gut microbiota alterations. Fiber intake is linked with improvements in metabolic homeostasis in rodents and humans, which is associated with changes in the gut microbiota. However, dietary fiber is extremely heterogeneous, and it is imperative to comprehensively analyze the impact of various plant-based fibers on metabolic homeostasis in an identical setting and compare the impact of alterations in the gut microbiota and bacterially derived metabolites from different fiber sources. OBJECTIVES: The objective of this study was to analyze the impact of different plant-based fibers (pectin, ß-glucan, wheat dextrin, resistant starch, and cellulose as a control) on metabolic homeostasis through alterations in the gut microbiota and its metabolites in high-fat diet (HFD)-fed mice. METHODS: HFD-fed mice were supplemented with 5 different fiber types (pectin, ß-glucan, wheat dextrin, resistant starch, or cellulose as a control) at 10% (wt/wt) for 18 wk (n = 12/group), measuring body weight, adiposity, indirect calorimetry, glucose tolerance, and the gut microbiota and metabolites. RESULTS: Only ß-glucan supplementation during HFD-feeding decreased adiposity and body weight gain and improved glucose tolerance compared with HFD-cellulose, whereas all other fibers had no effect. This was associated with increased energy expenditure and locomotor activity in mice compared with HFD-cellulose. All fibers supplemented into an HFD uniquely shifted the intestinal microbiota and cecal short-chain fatty acids; however, only ß-glucan supplementation increased cecal butyrate concentrations. Lastly, all fibers altered the small-intestinal microbiota and portal bile acid composition. CONCLUSIONS: These findings demonstrate that ß-glucan consumption is a promising dietary strategy for metabolic disease, possibly via increased energy expenditure through alterations in the gut microbiota and bacterial metabolites in mice.

3.
Nutr Metab (Lond) ; 20(1): 44, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858106

RESUMO

BACKGROUND: The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized. METHODS: In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation. RESULTS: In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. CONCLUSIONS: Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.

4.
Microbiome ; 11(1): 169, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533066

RESUMO

BACKGROUND: Upper small intestinal dietary lipids activate a gut-brain axis regulating energy homeostasis. The prebiotic, oligofructose (OFS) improves body weight and adiposity during metabolic dysregulation but the exact mechanisms remain unknown. This study examines whether alterations to the small intestinal microbiota following OFS treatment improve small intestinal lipid-sensing to regulate food intake in high fat (HF)-fed rats. RESULTS: In rats fed a HF diet for 4 weeks, OFS supplementation decreased food intake and meal size within 2 days, and reduced body weight and adiposity after 6 weeks. Acute (3 day) OFS treatment restored small intestinal lipid-induced satiation during HF-feeding, and was associated with increased small intestinal CD36 expression, portal GLP-1 levels and hindbrain neuronal activation following a small intestinal lipid infusion. Transplant of the small intestinal microbiota from acute OFS treated donors into HF-fed rats also restored lipid-sensing mechanisms to lower food intake. 16S rRNA gene sequencing revealed that both long and short-term OFS altered the small intestinal microbiota, increasing Bifidobacterium relative abundance. Small intestinal administration of Bifidobacterium pseudolongum to HF-fed rats improved small intestinal lipid-sensing to decrease food intake. CONCLUSION: OFS supplementation rapidly modulates the small intestinal gut microbiota, which mediates improvements in small intestinal lipid sensing mechanisms that control food intake to improve energy homeostasis. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Ratos , Animais , RNA Ribossômico 16S/genética , Obesidade/metabolismo , Peso Corporal , Gorduras na Dieta , Dieta Hiperlipídica/efeitos adversos
5.
Mol Ther Methods Clin Dev ; 27: 217-229, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36187720

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has caused over 600,000,000 infections globally thus far. Up to 30% of individuals with mild to severe disease develop long COVID, exhibiting diverse neurologic symptoms including dementias. However, there is a paucity of knowledge of molecular brain markers and whether these can precipitate the onset of Alzheimer's disease (AD). Herein, we report the brain gene expression profiles of severe COVID-19 patients showing increased expression of innate immune response genes and genes implicated in AD pathogenesis. The use of a mouse-adapted strain of SARS-CoV-2 (MA10) in an aged mouse model shows evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferon-inducible gene Ifi204, and complement genes C4 and C5AR1. Brain histopathology shows AD signatures including increased tau-phosphorylation, tau-oligomerization, and α-synuclein expression in aged MA10 infected mice. The results of gene expression profiling of SARS-CoV-2-infected and AD brains and studies in the MA10 aged mouse model taken together, for the first time provide evidence suggesting that SARS-CoV-2 infection alters expression of genes in the brain associated with the development of AD. Future studies of common molecular markers in SARS-CoV-2 infection and AD could be useful for developing novel therapies targeting AD.

6.
Obesity (Silver Spring) ; 30(7): 1442-1452, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35785478

RESUMO

OBJECTIVE: Obesity is associated with consumption of a Western diet low in dietary fiber, while prebiotics reduce body weight. Fiber induces short-chain fatty acid (SCFA) production, and SCFA administration is beneficial to host metabolic homeostasis. However, the role of endogenous SCFA signaling in the development of obesity is contentious. Therefore, the primary objective of this study is to evaluate the postprandial time course of SCFA production and uptake in healthy (chow-fed), Western diet-fed (high-fat diet [HFD]) obese, and oligofructose-treated HFD-fed (HFD + OFS) rats. METHODS: Male Sprague-Dawley rats were maintained on chow or HFD for 5 weeks, with or without supplementation of 10% OFS for 3 weeks. SCFAs were measured in the ileum, cecum, colon, portal vein, and vena cava at 0, 2, 4, 6, and 8 hours postprandially. RESULTS: Postprandial cecal and portal vein SCFAs were decreased in obese rats compared with lean chow controls, whereas no differences were observed in fasting SCFA concentrations. OFS supplementation increased SCFA levels in the cecum and portal vein during obesity. Butyrate levels were positively associated with portal glucagon-like peptide 1 and adiposity and with Roseburia relative abundance. CONCLUSIONS: The current study demonstrates that obesity is associated with reduced SCFA production, and that OFS supplementation increases SCFA levels. Additionally, postprandial butyrate production appears to be beneficial to host energy homeostasis.


Assuntos
Butiratos , Ácidos Graxos Voláteis , Animais , Fibras na Dieta/farmacologia , Masculino , Obesidade , Oligossacarídeos , Ratos , Ratos Sprague-Dawley
7.
Nutrients ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684471

RESUMO

Obesity is due in part to increased consumption of a Western diet that is low in dietary fiber. Conversely, an increase in fiber supplementation to a diet can have various beneficial effects on metabolic homeostasis including weight loss and reduced adiposity. Fibers are extremely diverse in source and composition, such as high-amylose maize, ß-glucan, wheat fiber, pectin, inulin-type fructans, and soluble corn fiber. Despite the heterogeneity of dietary fiber, most have been shown to play a role in alleviating obesity-related health issues, mainly by targeting and utilizing the properties of the gut microbiome. Reductions in body weight, adiposity, food intake, and markers of inflammation have all been reported with the consumption of various fibers, making them a promising treatment option for the obesity epidemic. This review will highlight the current findings on different plant-based fibers as a therapeutic dietary supplement to improve energy homeostasis via mechanisms of gut microbiota.


Assuntos
Fibras na Dieta/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase , Extratos Vegetais/administração & dosagem , Amilose/administração & dosagem , Amilose/química , Animais , Fibras na Dieta/uso terapêutico , Glucanos , Avaliação do Impacto na Saúde , Humanos , Inulina , Pectinas , Extratos Vegetais/uso terapêutico , Zea mays/química
8.
Oecologia ; 195(2): 435-451, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33484348

RESUMO

Turnover in species composition between sites, or beta diversity, is a critical component of species diversity that is typically influenced by geography, environment, and biotic interactions. Quantifying turnover is particularly challenging, however, in multi-host, multi-parasite assemblages where undersampling is unavoidable, resulting in inflated estimates of turnover and uncertainty about its spatial scale. We developed and implemented a framework using null models to test for community turnover in avian haemosporidian communities of three sky islands in the southwestern United States. We screened 776 birds for haemosporidian parasites from three genera (Parahaemoproteus, Plasmodium, and Leucocytozoon) by amplifying and sequencing a mitochondrial DNA barcode. We detected infections in 280 birds (36.1%), sequenced 357 infections, and found a total of 99 parasite haplotypes. When compared to communities simulated from a regional pool, we observed more unique, single-mountain haplotypes and fewer haplotypes shared among three mountain ranges than expected, indicating that haemosporidian communities differ to some degree among adjacent mountain ranges. These results were robust even after pruning datasets to include only identical sets of host species, and they were consistent for two of the three haemosporidian genera. The two more distant mountain ranges were more similar to each other than the one located centrally, suggesting that the differences we detected were due to stochastic colonization-extirpation dynamics. These results demonstrate that avian haemosporidian communities of temperate-zone forests differ on relatively fine spatial scales between adjacent sky islands. Null models are essential tools for testing the spatial scale of turnover in complex, undersampled, and poorly known systems.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Animais , Haemosporida/genética , Ilhas , Filogenia , Sudoeste dos Estados Unidos
9.
Nanomedicine ; 30: 102294, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861031

RESUMO

The tumor microenvironment plays a critical role in tumor initiation, progression, metastasis, and drug resistance. However, models recapitulating the complex 3D structure, heterogeneous cell environment, and cell-cell interactions found in vivo are lacking. Herein, we report on a gravitational microfluidic platform (GMP) retrofitted with MEMS sensors, which is integrated with 3D nanofiber scaffold-aided tumoroid culture. The results showed that this GMP for tumoroid growth mimics the tumor microenvironment more precisely than static culture models of colon cancer, including higher drug resistance, enhanced cancer stem cell properties, and increased secretion of pro-tumor cytokines. In addition, the GMP includes an integrated surface acoustic wave-based biosensing to monitor cell growth and pH changes to assess drug efficacy. Thus, this simple-to-use perfused GMP tumoroid culture system for in vitro and ex vivo studies may accelerate the drug development process and be a tool in personalized cancer treatment.


Assuntos
Neoplasias Colorretais/patologia , Gravitação , Microfluídica/instrumentação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Medicina de Precisão , Microambiente Tumoral
10.
J Vet Diagn Invest ; 31(3): 426-433, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30943877

RESUMO

Urinalysis is a rapid, simple, inexpensive, and reliable test that documents urine abnormalities reflecting various types of renal, hormonal, or metabolic diseases. Urinalysis could assist proper monitoring of the health of dolphins under human care; however, normal baseline values for dolphin urinalysis have not been reported, to our knowledge. We sampled urine from 193 common bottlenose dolphins ( Tursiops truncatus), living under human care in 24 Caribbean dolphinariums, by voluntary free-catch and analyzed the urine for chemical and microscopic variables using multi-agent dry reagent chemistry dipstick test strips, dedicated pH reagent strips, and unstained sediment slides. Most urine was clear, pale yellow to dark yellow, and had a fishy odor. Dipstick glucose, bilirubin, ketones, and nitrites were negative in all dolphins. The urine pH was acidic ( x¯ ± SD; 5.88 ± 0.58) and specific gravity (SG) was 1.035 ± 0.008. Most animals had 0-2 red blood cells and white blood cells per 40× field, and were negative for proteins. On microscopic sediment, 42.7% of samples had few-to-many squamous epithelial cells; hyaline and epithelial casts were observed only rarely. Crystals were observed in 36.6% of the samples; most were calcium oxalate dihydrate (48.2%) and amorphous urates (42.4%). The values obtained in our study can be used as a reference for health monitoring of dolphins in dolphinariums, and to monitor renal conditions and function in dolphins being rehabilitated or under human care.


Assuntos
Golfinho Nariz-de-Garrafa/urina , Urinálise/veterinária , Animais , Região do Caribe , Humanos , Fitas Reagentes , Gravidade Específica , Urinálise/instrumentação , Urinálise/métodos
11.
Behav Sci (Basel) ; 8(7)2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954072

RESUMO

The current study examined sexual assault perpetrator rape myths among college students, and in particular Greek students. Fraternity men are overrepresented among sexual assault perpetrators, while sorority women are at increased risk for victimization of sexual assault. The current study examined Greek-affiliated and non-Greek-affiliated perceptions of perpetrator rape myths among 892 college students; 58% of the sample was Greek-affiliated. Men and Greek-affiliated students reported higher agreement on stereotypes than women and non-Greek-affiliated students regarding perpetrator rape myths. Specifically, fraternity men reported higher stereotypical perceptions compared to all women and non-affiliated men, while there was no difference between sorority and non-affiliated women.

12.
J Am Coll Health ; 65(7): 482-491, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28641039

RESUMO

OBJECTIVE: Rape on college campuses continues to be a pervasive public health issue with approximately 11% of women experiencing rape while in college. As such, it is important to examine factors unique to college campuses that influence the occurrences of rape. METHODS: Using data from 1,423 four-year universities (public and private with at least 1,000 students) from the Office of Education and the Clery Act (2014), we examined institutional risk factors, such as tuition, liquor violations, Greek-life, athletic programs, institution type (public vs. private), and geographical location. RESULTS: Public institutions with higher tuition, more liquor violations, and greater numbers of fraternity men and athletes were more likely to report rape on their campuses. CONCLUSIONS: Findings suggest that there are university-level characteristics which may increase certain campuses propensity toward violence against women.


Assuntos
Demografia/estatística & dados numéricos , Estupro/estatística & dados numéricos , Delitos Sexuais/estatística & dados numéricos , Problemas Sociais , Feminino , Humanos , Relações Interpessoais , Masculino , Meio Social , Estudantes/estatística & dados numéricos , Estados Unidos , Universidades
13.
J Neurosci Methods ; 266: 11-20, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976724

RESUMO

BACKGROUND: Neurological injuries or disease can impair the function of motor circuitry controlling forearm supination, and recovery is often limited. Preclinical animal models are essential tools for developing therapeutic interventions to improve motor function after neurological damage. Here we describe the supination assessment task, an automated measure of quantifying forelimb supination in the rat. NEW METHOD: Animals were trained to reach out of a slot in a cage, grasp a spherical manipulandum, and supinate the forelimb. The angle of the manipulandum was measured using a rotary encoder. If the animal exceeded the predetermined turn angle, a reward pellet was delivered. This automated task provides a large, high-resolution dataset of turn angle over time. Multiple parameters can be measured including success rate, peak turn angle, turn velocity, area under the curve, and number of rotations per trial. The task provides a high degree of flexibility to the user, with both software and hardware parameters capable of being adjusted. RESULTS: We demonstrate the supination assessment task can effectively measure significant deficits in multiple parameters of rotational motor function for multiple weeks in two models of ischemic stroke. COMPARISON WITH EXISTING METHODS: Preexisting motor assays designed to measure forelimb supination in the rat require high-speed video analysis techniques. This operant task provides a high-resolution, quantitative end-point dataset of turn angle, which obviates the necessity of video analysis. CONCLUSIONS: The supination assessment task represents a novel, efficient method of evaluating forelimb rotation and may help decrease the cost and time of running experiments.


Assuntos
Automação Laboratorial/métodos , Supinação , Animais , Automação Laboratorial/instrumentação , Fenômenos Biomecânicos , Isquemia Encefálica/fisiopatologia , Condicionamento Operante , Modelos Animais de Doenças , Desenho de Equipamento , Feminino , Córtex Motor/fisiopatologia , Ratos Sprague-Dawley , Rotação , Software , Acidente Vascular Cerebral/fisiopatologia , Supinação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...