Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(4): e8783, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432937

RESUMO

Climate change causes marine species to shift and expand their distributions, often leading to changes in species diversity. While increased biodiversity is often assumed to confer positive benefits on ecosystem functioning, many examples have shown that the relationship is specific to the ecosystem and function studied and is often driven by functional composition and diversity. In the northwestern Gulf of Mexico, tropical species expansion was shown to have increased estuarine fish and invertebrate diversity; however, it is not yet known how those increases have affected functional diversity. To address this knowledge gap, two metrics of functional diversity, functional richness (FRic) and functional dispersion (FDis), were estimated in each year for a 38-year study period, for each of the eight major bays along the Texas coast. Then, the community-weighted mean (CWM) trait values for each of the functional traits are calculated to assess how functional composition has changed through time. Finally, principal component analysis (PCA) was used to identify species contributing most to changing functional diversity. We found significant increases in log-functional richness in both spring and fall, and significant decreases in functional dispersion in spring, suggesting that although new functional types are entering the bays, assemblages are becoming more dominated by similar functional types. Community-weighted trait means showed significant increases in the relative abundance of traits associated with large, long-lived, higher trophic level species, suggesting an increase in periodic and equilibrium life-history strategists within the bays. PCA identified mainly native sciaenid species as contributing most to functional diversity trends although several tropical species also show increasing trends through time. We conclude that the climate-driven species expansion in the northwestern Gulf of Mexico led to a decrease in functional dispersion due to increasing relative abundance of species with similar life-history characteristics, and thus the communities have become more functionally homogeneous.

2.
Commun Biol ; 2: 403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31701031

RESUMO

Climate change impacts physical and chemical properties of the oceans, and these changes affect the ecology of marine organisms. One important ecological consequence of climate change is the distribution shift of marine species toward higher latitudes. Here, the prevalence of nearly 150 species of fish and invertebrates were investigated to find changes in their distributions over 35 years along a subtropical coast within the Gulf of Mexico. Our results show that 90 species increased their occupancy probability, while 33 decreased (remaining species neither increase or decrease), and the ranges of many species expanded. Using rarefaction analysis, which allows for the estimation of species diversity, we show that species diversity has increased across the coast of Texas. Climate-mediated environmental variables are related to the changes in the occupancy probability, suggesting the expansion of tropical species into the region is increasing diversity.


Assuntos
Biodiversidade , Mudança Climática , Peixes , Invertebrados , Animais , Organismos Aquáticos , Ecossistema , Golfo do México , Modelos Biológicos , Dinâmica Populacional , Texas , Clima Tropical
3.
PLoS One ; 11(11): e0166479, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832213

RESUMO

This study investigated the contribution of shrimp stocks in supporting the production of valuable predator species. Fishery-independent data on white shrimp, brown shrimp, and selected fish species (spotted seatrout, red drum, and southern flounder) were collected from 1986 to 2014 by the Texas Parks and Wildlife Department, and converted to catch-per-unit effort (CPUE). Here, the associations between the CPUEs of fish species as predators and those of shrimp species as prey in each sampled bay and sampling season were analyzed using co-integration analysis and Partial Least Squares Regression (PLSR). Co-integration analysis revealed significant associations between 31 of 70 possible fish/shrimp pairings. The analysis also revealed discernible seasonal and spatial patterns. White shrimp in August and brown shrimp in May were associated with fish CPUEs in bays located along the lower coast of Texas, whereas white shrimp in November was more strongly associated with fish CPUEs in bays located on the upper coast. This suggests the possible influence of latitudinal environmental gradient. The results of the PLSR, on the other hand, were not conclusive. This may reflect the high statistical error rates inherent to the analysis of short non-stationary time series. Co-integration is a robust method when analyzing non-stationary time series, and a majority of time series in this study was non-stationary. Based on our co-integration results, we conclude that the CPUE data show significant associations between shrimp abundance and the three predator fish species in the tested regions.


Assuntos
Peixes/fisiologia , Penaeidae/fisiologia , Comportamento Predatório , Animais , Ecossistema , Golfo do México , Análise dos Mínimos Quadrados , Modelos Biológicos , Densidade Demográfica , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...