Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 737: 138699, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376094

RESUMO

A recent paper by Miszczak et al. (2020) examines metal contamination of mires in Poland and Norway. The authors conclude that lead (Pb) records in ombrotrophic peatlands cannot be used to reconstruct the chronological history of anthropogenic activities due to post-depositional mobility of the metal. We contest this general conclusion which stands in contrast with a significant body of literature demonstrating that Pb is largely immobile in the vast majority of ombrotrophic peatlands. Our aim is to reaffirm the crucial contribution that peat records have made to our knowledge of atmospheric Pb contamination. In addition, we reiterate the necessity of following established protocols to produce reliable records of anthropogenic Pb contamination in environmental archives.

2.
Sci Rep ; 8(1): 6876, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720603

RESUMO

Peatlands in northern latitudes sequester one third of the world's soil organic carbon. Mineral dusts can affect the primary productivity of terrestrial systems through nutrient transport but this process has not yet been documented in these peat-rich regions. Here we analysed organic and inorganic fractions of an 8900-year-old sequence from Store Mosse (the "Great Bog") in southern Sweden. Between 5420 and 4550 cal yr BP, we observe a seven-fold increase in net peat-accumulation rates corresponding to a maximum carbon-burial rate of 150 g C m-2 yr-1 - more than six times the global average. This high peat accumulation event occurs in parallel with a distinct change in the character of the dust deposited on the bog, which moves from being dominated by clay minerals to less weathered, phosphate and feldspar minerals. We hypothesize that this shift boosted nutrient input to the bog and stimulated ecosystem productivity. This study shows that diffuse sources and dust dynamics in northern temperate latitudes, often overlooked by the dust community in favour of arid and semi-arid regions, can be important drivers of peatland carbon accumulation and by extension, global climate, warranting further consideration in predictions of future climate variability.

3.
Sci Total Environ ; 609: 1411-1422, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28797147

RESUMO

Soil Organic Carbon (SOC) constitutes the largest terrestrial carbon pool. The understanding of its dynamics and the environmental factors that influence its behaviour as sink or source of atmospheric CO2 is crucial to quantify the carbon budget at the global scale. At the European scale, most of the existing studies to account for SOC stocks are centred in the fitting of predictive model to ascertain the distribution of SOC. However, the development of methodologies for monitoring and identifying the environmental factors that control SOC storage in Europe remains a key research challenge. Here we present a modelling procedure for mapping and monitoring SOC contents that uses Visible-Near Infrared (VNIR) spectroscopic measurements and a series of environmental covariates to ascertain the key environmental processes that have a major contribution into SOC sequestration processes. Our results show that it follows a geographically non-stationary process in which the influencing environmental factors have different weights depending on the spatial location. This implies that SOC stock modelling should not rely on a single model but on a combination of different statistical models depending on the environmental characteristics of each area. A cluster classification of European soils in relation to those factors resulted in the determination of four groups for which specific models have been obtained. Differences in climate, soil pH, content of coarse fragments or land cover type are the main factors explaining the differences in SOC in topsoil from Europe. We found that climatic conditions are the main driver of SOC storage at the continental scale, but we also found that parameters like land cover type influence SOC content found at the local scales in certain areas. Our methodology developed at continental scale could be used in future research aimed to improve the predictive performance of SOC assessments at European scale.

4.
Sci Total Environ ; 409(22): 4831-40, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21889788

RESUMO

The study of a Posidonia oceanica mat (a peat-like marine sediment) core has provided a record of changes in heavy metal abundances (Fe, Mn, Ni, Cr, Cu, Pb, Cd, Zn, As and Al) since the Mid-Holocene (last 4470yr) in Portlligat Bay (NW Mediterranean). Metal contents were determined in P. oceanica. Both, the concentration records and the results of principal components analysis showed that metal pollution in the studied bay started ca. 2800yr BP and steadily increased until present. The increase in Fe, Cu, Pb, Cd, Zn and As concentrations since ca. 2800yr BP and in particular during Greek (ca. 2680-2465cal BP) and Roman (ca. 2150-1740cal BP) times shows an early anthropogenic pollution rise in the bay, which might be associated with large- and short-scale cultural and technological development. In the last ca. 1000yr the concentrations of heavy metals, mainly derived from anthropogenic activities, have significantly increased (e.g. from ~15 to 47µg g(-1) for Pb, ~23 to 95µg g(-1) for Zn and ~8 to 228µg g(-1) for As). Our study demonstrates for the first time the uniqueness of P. oceanica meadows as long-term archives of abundances, patterns, and trends of heavy metals during the Late Holocene in Mediterranean coastal ecosystems.


Assuntos
Alismatales/química , Poluentes Ambientais/análise , Poluição Ambiental/história , Sedimentos Geológicos/química , Metais Pesados/análise , Solo/química , História Antiga , Mar Mediterrâneo , Análise de Componente Principal
5.
Sci Total Environ ; 408(22): 5583-91, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20810148

RESUMO

Concentrations of the isomers of the organochlorine pesticide hexachlorocyclohexane (HCH) were determined in 252 surface soil samples collected within a sampling network covering agricultural areas in Galicia (NW Spain). The concentration of total HCH (sum of α+ß+γ+δ) ranged between 4 and 2305ngg(-)¹ (dry weight), with the α-HCH and γ-HCH isomers predominating (<1-1404ngg(-)¹ and <1-569ngg(-)¹, respectively). The distribution of the pesticide residues was very heterogeneous, with the largest concentrations present in one of the studied areas (the province of A Coruña). The distribution of HCH was not found to be related to any soil property (organic matter, pH, clays, and metals). Multivariate statistical analysis of the data revealed that three populations of samples with a defined composition of HCH, can be related to the source of HCH: technical HCH (α/γ>3), lindane (99% γ-HCH), or both. The existence of a third population consisting almost exclusively of α-HCH suggests that background contamination of anthropogenic origin dates from several decades ago. The detailed analysis of these populations enabled the possible temporal scale of the application of these pesticides to be deduced.


Assuntos
Monitoramento Ambiental , Hexaclorocicloexano/análise , Inseticidas/análise , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Espanha
6.
Sci Total Environ ; 394(2-3): 303-12, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18295823

RESUMO

This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: wood

Assuntos
Carvão Mineral , Mercúrio/metabolismo , Folhas de Planta/metabolismo , Centrais Elétricas , Poluentes do Solo/metabolismo , Árvores , Ecossistema , Monitoramento Ambiental , Mercúrio/análise , Poluentes do Solo/análise , Espanha , Madeira
7.
J Environ Monit ; 6(5): 493-501, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15152319

RESUMO

Given the increasing interest in using peat bogs as archives of atmospheric metal deposition, the lack of validated sample preparation methods and suitable certified reference materials has hindered not only the quality assurance of the generated analytical data but also the interpretation and comparison of peat core metal profiles from different laboratories in the international community. Reference materials play an important role in the evaluation of the accuracy of analytical results and are essential parts of good laboratory practice. An ombrotrophic peat bog reference material has been developed by 14 laboratories from nine countries in an inter-laboratory comparison between February and October 2002. The material has been characterised for both acid-extractable and total concentrations of a range of elements, including Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Mn, Na, Ni, P, Pb, Ti, V and Zn. The steps involved in the production of the reference material (i.e. collection and preparation, homogeneity and stability studies, and certification) are described in detail.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Poluentes do Solo/análise , Metais Pesados/análise , Valores de Referência , Solo/análise , Oligoelementos/análise
8.
Environ Sci Technol ; 38(7): 1984-91, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15112797

RESUMO

Natural formation of organohalogen compounds can be shown to occur in all natural environments. Peat bogs, which are built up exclusively of organic matter and cover approximately 3% of the total continental world area, are potentially significant reservoirs for organohalogen formation. Up to now, fluxes and retention rates of halogens and organohalogen formation in peat bogs were mostly unquantified. In our study, we investigated the retention of atmospheric derived halogens and the natural formation of organohalogens by differential halogen analysis in two peat bogs in southernmost Chile. Atmospheric wet deposition rates of chlorine, bromine, and iodine range between 600 and 36000, 6 and 160, and 1 and 3 mg m(-2) yr(-1), respectively. Mean annual net accumulation rates of these halogens in peat are calculated to be 12-72 mg of Cl m(-2), 1.7-12 mg of Br m(-2), and 0.4-1.2 mg of l m(-2). Retention rates are similarly high for iodine (36-46%) and bromine (7.5-50%), and substantially lower for chlorine (0.2-2%). To evaluate influences of peat decomposition processes on halogen enrichment, halogen concentrations were compared to carbon/nitrogen ratios (C/N). Our results indicate that up to 95% of chlorine, 91% of bromine, and 81% of iodine in peat exist in an organically bound form. The results also indicate that the concentrations of halogens, especially of bromine and iodine, in peat are largely determined by peat decomposition processes and that halogens are not conservative in bogs.


Assuntos
Bromo/química , Cloro/química , Iodo/química , Solo , Biodegradação Ambiental , Chile , Ecossistema , Monitoramento Ambiental , Compostos Orgânicos/metabolismo , Abastecimento de Água
9.
Environ Sci Technol ; 37(1): 32-9, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12542287

RESUMO

Ombrotrophic peat bogs have been widely used to evaluate long-term records of atmospheric mercury (Hg) deposition. One of the major aims of these investigations is the estimation of the increase in atmospheric Hg fluxes during the industrial age compared to preindustrial fluxes. Comparability of Hg accumulation rates calculated from density, peat accumulation rates, and Hg concentrations requires linearity between these parameters. Peat formation is a dynamic process accompanied by intense mass loss and alteration of the organic material. Our investigations on three peat cores from the Magellanic Moorlands, Chile, indicate that Hg concentrations in peat strongly depend on peat humification. Moreover, differences in mass accumulation rates during peat evolution are not compensated by linear changes in density, peat accumulation, or Hg concentrations. We suggest that Hg accumulation rates be normalized to carbon accumulation rates to achieve comparability of Hg accumulation rates derived from differently altered peat sections. Normalization to the carbon accumulation rates reduces Hg accumulation rates in less degraded peat sections in the upper peat layers by factors of more than 2. Our results suggest that the increase in Hg deposition rates during modern times derived from ombrotrophic peat bogs are potentially overestimated if Hg accumulation rates are not corrected for mass accumulation rates.


Assuntos
Mercúrio/história , Poluentes do Solo/história , Solo , Carbono/história , Chile , Ecossistema , Monitoramento Ambiental , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Antiga , Substâncias Húmicas/química , Substâncias Húmicas/história , Mercúrio/análise , Poluentes do Solo/análise
10.
Sci Total Environ ; 292(1-2): 129-39, 2002 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12108441

RESUMO

Traditional peat sample preparation methods such as drying at high temperatures and milling may be unsuitable for Hg concentration determination in peats due to the possible presence of volatile Hg species, which could be lost during drying. Here, the effects of sample preparation and natural variation on measured Hg concentrations are investigated. Slight increases in mercury concentrations were observed in samples dried at room temperature and at 30 degrees C (6.7 and 2.48 ng kg(-1) h(-1), respectively), and slight decreases were observed in samples dried at 60, 90 and 105 degrees C (2.36, 3.12 and 8.52 ng kg(-1) h(-1), respectively). Fertilising the peat slightly increased Hg loss (3.08 ng kg(-1) h(-1) in NPK-fertilised peat compared to 0.28 ng kg(-1) h(-1) in unfertilised peat, when averaged over all temperatures used). Homogenising samples by grinding in a machine also caused a loss of Hg. A comparison of two Hg profiles from an Arctic peat core, measured in frozen samples and in air-dried samples, revealed that no Hg losses occurred upon air-drying. A comparison of Hg concentrations in several plant species that make up peat, showed that some species (Pinus mugo, Sphagnum recurvum and Pseudevernia furfuracea) are particularly efficient Hg retainers. The disproportionally high Hg concentrations in these species can cause considerable variation in Hg concentrations within a peat slice. The variation of water content (1.6% throughout 17-cm core, 0.97% in a 10 x 10 cm slice), bulk density (40% throughout 17-cm core, 15.6% in a 10 x 10 cm slice) and Hg concentration (20% in a 10 x 10 cm slice) in ombrotrophic peat were quantified in order to determine their relative importance as sources of analytical error. Experiments were carried out to determine a suitable peat analysis program using the Leco AMA 254, capable of determining mercury concentrations in solid samples. Finally, an analytical protocol for the determination of Hg concentrations in solid peat samples is proposed. This method allows correction for variation in factors such as vegetation type, bulk density, water content and Hg concentration in individual peat slices. Several subsamples from each peat slice are air dried, combined and measured for Hg using the AMA254, using a program of 30 s (drying), 125 s (decomposition) and 45 s (waiting). Bulk density and water content measurements are performed on every slice using separate subsamples.


Assuntos
Monitoramento Ambiental/métodos , Mercúrio/análise , Poluentes do Solo/análise , Solo/análise , Mercúrio/metabolismo , Plantas/química , Plantas/metabolismo , Poluentes do Solo/metabolismo
11.
Science ; 284(5416): 939-42, 1999 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-10320369

RESUMO

A peat core from a bog in northwest Spain provides a record of the net accumulation of atmospheric mercury since 4000 radiocarbon years before the present. It was found that cold climates promoted an enhanced accumulation and the preservation of mercury with low thermal stability, and warm climates were characterized by a lower accumulation and the predominance of mercury with moderate to high thermal stability. This record can be separated into natural and anthropogenic components. The substantial anthropogenic mercury component began approximately 2500 radiocarbon years before the present, which is near the time of the onset of mercury mining in Spain. Anthropogenic mercury has dominated the deposition record since the Islamic period (8th to 11th centuries A.D.). The results shown here have implications for the global mercury cycle and also imply that the thermal lability of the accumulated mercury can be used not only to quantify the effects of human activity, but also as a new tool for quantitative paleotemperature reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...