Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605173

RESUMO

Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems. They play fundamental roles as evolutionary drivers of eukaryotic plankton and regulators of global biogeochemical cycles. However, we lack knowledge about their native hosts, hindering our understanding of their life cycle and ecological importance. In the present study, we applied a single-cell RNA sequencing (scRNA-seq) approach to samples collected during an induced algal bloom, which enabled pairing active giant viruses with their native protist hosts. We detected hundreds of single cells from multiple host lineages infected by diverse giant viruses. These host cells included members of the algal groups Chrysophycae and Prymnesiophycae, as well as heterotrophic flagellates in the class Katablepharidaceae. Katablepharids were infected with a rare Imitervirales-07 giant virus lineage expressing a large repertoire of cell-fate regulation genes. Analysis of the temporal dynamics of these host-virus interactions revealed an important role for the Imitervirales-07 in controlling the population size of the host Katablepharid population. Our results demonstrate that scRNA-seq can be used to identify previously undescribed host-virus interactions and study their ecological importance and impact.

2.
Elife ; 122023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059790

RESUMO

Microbial plankton play a central role in marine biogeochemical cycles, but the timing in which abundant lineages diversified into ocean environments remains unclear. Here, we reconstructed the timeline in which major clades of bacteria and archaea colonized the ocean using a high-resolution benchmarked phylogenetic tree that allows for simultaneous and direct comparison of the ages of multiple divergent lineages. Our findings show that the diversification of the most prevalent marine clades spans throughout a period of 2.2 Ga, with most clades colonizing the ocean during the last 800 million years. The oldest clades - SAR202, SAR324, Ca. Marinimicrobia, and Marine Group II - diversified around the time of the Great Oxidation Event, during which oxygen concentration increased but remained at microaerophilic levels throughout the Mid-Proterozoic, consistent with the prevalence of some clades within these groups in oxygen minimum zones today. We found the diversification of the prevalent heterotrophic marine clades SAR11, SAR116, SAR92, SAR86, and Roseobacter as well as the Marine Group I to occur near to the Neoproterozoic Oxygenation Event (0.8-0.4 Ga). The diversification of these clades is concomitant with an overall increase of oxygen and nutrients in the ocean at this time, as well as the diversification of eukaryotic algae, consistent with the previous hypothesis that the diversification of heterotrophic bacteria is linked to the emergence of large eukaryotic phytoplankton. The youngest clades correspond to the widespread phototrophic clades Prochlorococcus, Synechococcus, and Crocosphaera, whose diversification happened after the Phanerozoic Oxidation Event (0.45-0.4 Ga), in which oxygen concentrations had already reached their modern levels in the atmosphere and the ocean. Our work clarifies the timing at which abundant lineages of bacteria and archaea colonized the ocean, thereby providing key insights into the evolutionary history of lineages that comprise the majority of prokaryotic biomass in the modern ocean.


Assuntos
Archaea , Cianobactérias , Archaea/genética , Filogenia , Oxigênio , Oceanos e Mares , Água do Mar/microbiologia
3.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425953

RESUMO

Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems1,2. They play major roles as evolutionary drivers of eukaryotic plankton3 and regulators of global biogeochemical cycles4. Recent metagenomic studies have significantly expanded the known diversity of marine giant viruses1,5-7, but we still lack fundamental knowledge about their native hosts, thereby hindering our understanding of their lifecycle and ecological importance. Here, we aim to discover the native hosts of giant viruses using a novel, sensitive single-cell metatranscriptomic approach. By applying this approach to natural plankton communities, we unraveled an active viral infection of several giant viruses, from multiple lineages, and identified their native hosts. We identify a rare lineage of giant virus (Imitervirales-07) infecting a minute population of protists (class Katablepharidaceae) and revealed the prevalence of highly expressed viral-encoded cell-fate regulation genes in infected cells. Further examination of this host-virus dynamics in a temporal resolution suggested this giant virus controls its host population demise. Our results demonstrate how single-cell metatranscriptomics is a sensitive approach for pairing viruses with their authentic hosts and studying their ecological significance in a culture-independent manner in the marine environment.

4.
PLoS Genet ; 18(5): e1010220, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605022

RESUMO

The evolutionary forces that determine genome size in bacteria and archaea have been the subject of intense debate over the last few decades. Although the preferential loss of genes observed in prokaryotes is explained through the deletional bias, factors promoting and preventing the fixation of such gene losses often remain unclear. Importantly, statistical analyses on this topic typically do not consider the potential bias introduced by the shared ancestry of many lineages, which is critical when using species as data points because of the potential dependence on residuals. In this study, we investigated the genome size distributions across a broad diversity of bacteria and archaea to evaluate if this trait is phylogenetically conserved at broad phylogenetic scales. After model fit, Pagel's lambda indicated a strong phylogenetic signal in genome size data, suggesting that the diversification of this trait is influenced by shared evolutionary histories. We used a phylogenetic generalized least-squares analysis (PGLS) to test whether phylogeny influences the predictability of genome size from dN/dS ratios and 16S copy number, two variables that have been previously linked to genome size. These results confirm that failure to account for evolutionary history can lead to biased interpretations of genome size predictors. Overall, our results indicate that although bacteria and archaea can rapidly gain and lose genetic material through gene transfers and deletions, respectively, phylogenetic signal for genome size distributions can still be recovered at broad phylogenetic scales that should be taken into account when inferring the drivers of genome size evolution.


Assuntos
Archaea , Evolução Molecular , Archaea/genética , Bactérias/genética , Tamanho do Genoma , Filogenia
5.
Mol Biol Evol ; 38(12): 5514-5527, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34436605

RESUMO

Reconstruction of the Tree of Life is a central goal in biology. Although numerous novel phyla of bacteria and archaea have recently been discovered, inconsistent phylogenetic relationships are routinely reported, and many inter-phylum and inter-domain evolutionary relationships remain unclear. Here, we benchmark different marker genes often used in constructing multidomain phylogenetic trees of bacteria and archaea and present a set of marker genes that perform best for multidomain trees constructed from concatenated alignments. We use recently-developed Tree Certainty metrics to assess the confidence of our results and to obviate the complications of traditional bootstrap-based metrics. Given the vastly disparate number of genomes available for different phyla of bacteria and archaea, we also assessed the impact of taxon sampling on multidomain tree construction. Our results demonstrate that biases between the representation of different taxonomic groups can dramatically impact the topology of resulting trees. Inspection of our highest-quality tree supports the division of most bacteria into Terrabacteria and Gracilicutes, with Thermatogota and Synergistota branching earlier from these superphyla. This tree also supports the inclusion of the Patescibacteria within the Terrabacteria as a sister group to the Chloroflexota instead of as a basal-branching lineage. For the Archaea, our tree supports three monophyletic lineages (DPANN, Euryarchaeota, and TACK/Asgard), although we note the basal placement of the DPANN may still represent an artifact caused by biased sequence composition. Our findings provide a robust and standardized framework for multidomain phylogenetic reconstruction that can be used to evaluate inter-phylum relationships and assess uncertainty in conflicting topologies of the Tree of Life.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Evolução Biológica , Filogenia , Incerteza
6.
Nature ; 588(7836): 141-145, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33208937

RESUMO

Endogenous viral elements (EVEs)-viruses that have integrated their genomes into those of their hosts-are prevalent in eukaryotes and have an important role in genome evolution1,2. The vast majority of EVEs that have been identified to date are small genomic regions comprising a few genes2, but recent evidence suggests that some large double-stranded DNA viruses may also endogenize into the genome of the host1. Nucleocytoplasmic large DNA viruses (NCLDVs) have recently become of great interest owing to their large genomes and complex evolutionary origins3-6, but it is not yet known whether they are a prominent component of eukaryotic EVEs. Here we report the widespread endogenization of NCLDVs in diverse green algae; these giant EVEs reached sizes greater than 1 million base pairs and contained as many as around 10% of the total open reading frames in some genomes, substantially increasing the scale of known viral genes in eukaryotic genomes. These endogenized elements often shared genes with host genomic loci and contained numerous spliceosomal introns and large duplications, suggesting tight assimilation into host genomes. NCLDVs contain large and mosaic genomes with genes derived from multiple sources, and their endogenization represents an underappreciated conduit of new genetic material into eukaryotic lineages that can substantially impact genome composition.


Assuntos
Clorófitas/genética , Clorófitas/virologia , Genoma/genética , Vírus Gigantes/genética , Genes Virais , Íntrons/genética , Mosaicismo , Phycodnaviridae/genética , Filogenia
7.
Nat Commun ; 11(1): 1710, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249765

RESUMO

The discovery of eukaryotic giant viruses has transformed our understanding of the limits of viral complexity, but the extent of their encoded metabolic diversity remains unclear. Here we generate 501 metagenome-assembled genomes of Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from environments around the globe, and analyze their encoded functional capacity. We report a remarkable diversity of metabolic genes in widespread giant viruses, including many involved in nutrient uptake, light harvesting, and nitrogen metabolism. Surprisingly, numerous NCLDV encode the components of glycolysis and the TCA cycle, suggesting that they can re-program fundamental aspects of their host's central carbon metabolism. Our phylogenetic analysis of NCLDV metabolic genes and their cellular homologs reveals distinct clustering of viral sequences into divergent clades, indicating that these genes are virus-specific and were acquired in the distant past. Overall our findings reveal that giant viruses encode complex metabolic capabilities with evolutionary histories largely independent of cellular life, strongly implicating them as important drivers of global biogeochemical cycles.


Assuntos
Carbono/metabolismo , Genoma Viral , Vírus Gigantes/genética , Asfarviridae/genética , Ciclo do Ácido Cítrico/genética , Citoplasma/virologia , Eucariotos/virologia , Evolução Molecular , Vírus Gigantes/enzimologia , Vírus Gigantes/metabolismo , Glicólise/genética , Família Multigênica , Nitrogênio/metabolismo , Processos Fototróficos/genética , Processos Fototróficos/efeitos da radiação , Filogenia , Poxviridae/genética
8.
PeerJ ; 6: e4780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761063

RESUMO

Hypersaline microbial mats develop through seasonal and diel fluctuations, as well as under several physicochemical variables. Hence, resident microorganisms commonly employ strategies such as the synthesis of polyhydroxyalkanoates (PHAs) in order to resist changing and stressful conditions. However, the knowledge of bacterial PHA production in hypersaline microbial mats has been limited to date, particularly in regard to medium-chain length PHAs (mcl-PHAs), which have biotechnological applications due to their plastic properties. The aim of this study was to obtain evidence for PHA production in two hypersaline microbial mats of Guerrero Negro, Mexico by searching for PHA granules and PHA synthase genes in isolated bacterial strains and environmental samples. Six PHA-producing strains were identified by 16S rRNA gene sequencing; three of them corresponded to a Halomonas sp. In addition, Paracoccus sp., Planomicrobium sp. and Staphylococcus sp. were also identified as PHA producers. Presumptive PHA granules and PHA synthases genes were detected in both sampling sites. Moreover, phylogenetic analysis showed that most of the phylotypes were distantly related to putative PhaC synthases class I sequences belonging to members of the classes Alphaproteobacteria and Gammaproteobacteria distributed within eight families, with higher abundances corresponding mainly to Rhodobacteraceae and Rhodospirillaceae. This analysis also showed that PhaC synthases class II sequences were closely related to those of Pseudomonas putida, suggesting the presence of this group, which is probably involved in the production of mcl-PHA in the mats. According to our state of knowledge, this study reports for the first time the occurrence of phaC and phaC1 sequences in hypersaline microbial mats, suggesting that these ecosystems may be a novel source for the isolation of short- and medium-chain length PHA producers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...