Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(4): e0194266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698406

RESUMO

The RV144 Phase III clinical trial with ALVAC-HIV prime and AIDSVAX B/E subtypes CRF01_AE (A244) and B (MN) gp120 boost vaccine regime in Thailand provided a foundation for the future development of improved vaccine strategies that may afford protection against the human immunodeficiency virus type 1 (HIV-1). Results from this trial showed that immune responses directed against specific regions V1V2 of the viral envelope (Env) glycoprotein gp120 of HIV-1, were inversely correlated to the risk of HIV-1 infection. Due to the low production of gp120 proteins in CHO cells (2-20 mg/L), cleavage sites in V1V2 loops (A244) and V3 loop (MN) causing heterogeneous antigen products, it was an urgent need to generate CHO cells harboring A244 gp120 with high production yields and an additional, homogenous and uncleaved subtype B gp120 protein to replace MN used in RV144 for the future clinical trials. Here we describe the generation of Chinese Hamster Ovary (CHO) cell lines stably expressing vaccine HIV-1 Env antigens for these purposes: one expressing an HIV-1 subtype CRF01_AE A244 Env gp120 protein (A244.AE) and one expressing an HIV-1 subtype B 6240 Env gp120 protein (6240.B) suitable for possible future manufacturing of Phase I clinical trial materials with cell culture expression levels of over 100 mg/L. The antigenic profiles of the molecules were elucidated by comprehensive approaches including analysis with a panel of well-characterized monoclonal antibodies recognizing critical epitopes using Biacore and ELISA, and glycosylation analysis by mass spectrometry, which confirmed previously identified glycosylation sites and revealed unknown sites of O-linked and N-linked glycosylations at non-consensus motifs. Overall, the vaccines given with MF59 adjuvant induced higher and more rapid antibody (Ab) responses as well as higher Ab avidity than groups given with aluminum hydroxide. Also, bivalent proteins (A244.AE and 6240.B) formulated with MF59 elicited distinct V2-specific Abs to the epitope previously shown to correlate with decreased risk of HIV-1 infection in the RV144 trial. All together, these results provide critical information allowing the consideration of these candidate gp120 proteins for future clinical evaluations in combination with a potent adjuvant.


Assuntos
Adjuvantes Imunológicos , Antígenos HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Reações Antígeno-Anticorpo , Células CHO , Cricetinae , Cricetulus , Epitopos/imunologia , Feminino , Glicosilação , Cobaias , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Antígenos HIV/genética , Antígenos HIV/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Polissorbatos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Esqualeno/imunologia
2.
J Virol ; 84(5): 2453-65, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20015983

RESUMO

Human gammaherpesviruses, Epstein-Barr virus, and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus are important pathogens associated with diseases, including lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) is used as an experimental model system to study the host immune control of infection and explore novel vaccine strategies based on latency-deficient live viruses. We studied the properties and the potential of a recombinant MHV-68 (AC-RTA) in which the genes required for persistent infection were replaced by a constitutively expressed viral transcription activator, RTA, which dictates the virus to lytic replication. After intranasal infection of mice, replication of AC-RTA in the lung was attenuated, and no AC-RTA virus or viral DNA was detected in the isolated splenocytes, indicating a lack of latency in the spleen. Infection of the AC-RTA virus elicited both cellular immune responses and virus-specific IgG at a level comparable to that elicited by infection of the wild-type virus. Importantly, vaccination of AC-RTA was able to protect mice against subsequent challenge by the wild-type MHV-68. AC-RTA provides a vaccine strategy for preventing infection of human gammaherpesviruses. Furthermore, our results suggest that immunity to the major latent antigens is not required for protection.


Assuntos
Imunidade/imunologia , Rhadinovirus/imunologia , Rhadinovirus/fisiologia , Latência Viral/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Feminino , Perfilação da Expressão Gênica , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/imunologia , Herpesvirus Humano 8/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Rhadinovirus/genética , Baço/virologia , Vacinação , Proteínas Virais/genética , Proteínas Virais/imunologia , Latência Viral/genética , Replicação Viral/imunologia
3.
J Virol ; 83(5): 2265-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19091863

RESUMO

A hallmark of productive infection by DNA viruses is the coupling of viral late gene expression to genome replication. Here we report the identification of open reading frame 30 (ORF30) and ORF34 as viral trans factors crucial for activating late gene transcription following viral DNA replication during lytic infection of murine gammaherpesvirus 68 (MHV-68). The mutant virus lacking either ORF30 or ORF34 underwent normal DNA replication but failed to express viral late gene transcripts, leading to nonproductive infection. In a reporter assay system, ORF30 and ORF34 were required for MHV-68 to activate the viral late gene promoters. Furthermore, studies using chromatin immunoprecipitation assays showed that the recruitment of RNA polymerase II to the viral late promoters during lytic infection was significantly reduced in the absence of ORF30 or ORF34. Together, the results suggest that ORF30 and ORF34 may play an important role in the assembly of the transcription initiation complex at the late gene promoters. Our discovery of the viral mutants that uncouple late gene transcription from DNA replication lays an important foundation to dissect the mechanism of this critical step of gene expression regulation.


Assuntos
Regulação Viral da Expressão Gênica , Fases de Leitura Aberta , Rhadinovirus/genética , Transcrição Gênica , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Replicação do DNA , DNA Viral/genética , Genes Virais , Genoma Viral , Camundongos , Mutação , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Rhadinovirus/fisiologia , Replicação Viral
4.
J Virol ; 82(24): 12498-509, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842717

RESUMO

Gammaherpesviruses establish life-long persistency inside the host and cause various diseases during their persistent infection. However, the systemic interaction between the virus and host in vivo has not been studied in individual hosts continuously, although such information can be crucial to control the persistent infection of the gammaherpesviruses. For the noninvasive and continuous monitoring of the interaction between gammaherpesvirus and the host, a recombinant murine gammaherpesvirus 68 (MHV-68, a gammaherpesvirus 68) was constructed to express a firefly luciferase gene driven by the viral M3 promoter (M3FL). Real-time monitoring of M3FL infection revealed novel sites of viral replication, such as salivary glands, as well as acute replication in the nose and the lung and progression to the spleen. Continuous monitoring of M3FL infection in individual mice demonstrated the various kinetics of transition to different organs and local clearance, rather than systemically synchronized clearance. Moreover, in vivo spontaneous reactivation of M3FL from latency was detected after the initial clearance of acute infection and can be induced upon treatment with either a proteasome inhibitor Velcade or an immunosuppressant cyclosporine A. Taken together, our results demonstrate that the in vivo replication and reactivation of gammaherpesvirus are dynamically controlled by the locally defined interaction between the virus and the host immune system and that bioluminescence imaging can be successfully used for the real-time monitoring of this dynamic interaction of MHV-68 with its host in vivo.


Assuntos
Gammaherpesvirinae/fisiologia , Replicação Viral , Animais , Linhagem Celular , Genes Reporter/genética , Genoma Viral/genética , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Cinética , Camundongos , Latência Viral
5.
J Virol ; 80(19): 9730-40, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16973577

RESUMO

Lytic replication of the tumor-associated human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus has important implications in pathogenesis and tumorigenesis. Herpesvirus lytic genes have been temporally classified as exhibiting immediate-early (IE), early, and late expression kinetics. Though the regulation of IE and early gene expression has been studied extensively, very little is known regarding the regulation of late gene expression. Late genes, which primarily encode virion structural proteins, require viral DNA replication for their expression. We have identified a murine gammaherpesvirus 68 (MHV-68) early lytic gene, ORF18, essential for viral replication. ORF18 is conserved in both beta- and gammaherpesviruses. By generating an MHV-68 ORF18-null virus, we characterized the stage of the virus lytic cascade that requires the function of ORF18. Gene expression profiling and quantitation of viral DNA synthesis of the ORF18-null virus revealed that the expression of early genes and viral DNA replication were not affected; however, the transcription of late genes was abolished. Hence, we have identified a gammaherpesvirus-encoded factor essential for the expression of late genes independently of viral DNA synthesis.


Assuntos
Gammaherpesvirinae/genética , Gammaherpesvirinae/metabolismo , Regulação Viral da Expressão Gênica , Fases de Leitura Aberta/genética , Transcrição Gênica/genética , Sequência de Aminoácidos , Animais , Antígenos/imunologia , Antígenos/metabolismo , Linhagem Celular , Sequência Conservada , Cricetinae , Gammaherpesvirinae/química , Perfilação da Expressão Gênica , Genoma Viral/genética , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Recombinação Genética/genética , Alinhamento de Sequência , Fatores de Tempo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
6.
J Virol ; 78(23): 12940-50, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15542646

RESUMO

Replication and transcription activator (RTA), an immediate-early gene product of gamma-2 herpesviruses including Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gamma herpesvirus 68 (MHV-68), plays a critical role in controlling the viral life cycle. RTA acts as a strong transcription activator for several downstream genes of KSHV and MHV-68 through direct DNA binding, as well as via indirect mechanisms. HMGB1 (also called HMG-1) protein is a highly conserved nonhistone chromatin protein with the ability to bind and bend DNA. HMGB1 protein promoted RTA binding to different RTA target sites in vitro, with greater enhancement to low-affinity sites than to high-affinity sites. Box A or box B and homologues of HMGB1 also enhanced RTA binding to DNA. Transient transfection of HMGB1 stimulated RTA transactivation of RTA-responsive promoters from KSHV and MHV-68. Furthermore, MHV-68 viral gene expression, as well as viral replication, was significantly reduced in HMGB1-deficient cells than in the wild type. This abated viral gene expression was partially restored by HMGB1 transfection into HMGB1(-/-) cells. These results suggest an important function of the DNA architectural protein, HMGB1, in RTA-mediated gene expression, as well as viral replication in gamma-2 herpesviruses.


Assuntos
Proteína HMGB1/fisiologia , Herpesvirus Humano 8/genética , Proteínas Imediatamente Precoces/fisiologia , Rhadinovirus/genética , Transativadores/fisiologia , Ativação Transcricional , Proteínas Virais/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Cricetinae , Humanos , Dados de Sequência Molecular , Elementos de Resposta , Replicação Viral
7.
J Virol ; 78(17): 9215-23, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15308716

RESUMO

Kaposi's sarcoma-associated herpesvirus and murine gammaherpesvirus-68 (MHV-68) establish latent infections and are associated with various types of malignancies. They are members of the gamma-2 herpesvirus subfamily and encode a replication and transcriptional activator, RTA, which is necessary and sufficient to disrupt latency and initiate the viral lytic cycle in vitro. We have constructed a recombinant MHV-68 virus that overexpresses RTA. This virus has faster replication kinetics in vitro and in vivo, is deficient in establishing latency, exhibits a reduction in the development of a mononucleosis-like disease in mice, and can protect mice against challenge by wild-type MHV-68. The present study, by using MHV-68 as an in vivo model system, demonstrated that RTA plays a critical role in the control of viral latency and suggests that latency is a determinant of viral pathogenesis in vivo.


Assuntos
Rhadinovirus/fisiologia , Superinfecção/prevenção & controle , Superinfecção/virologia , Latência Viral/fisiologia , Animais , Linhagem Celular , Feminino , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Cinética , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Rhadinovirus/genética , Rhadinovirus/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Vacinação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral/genética , Replicação Viral
8.
J Virol ; 77(23): 12753-63, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14610197

RESUMO

The murine gammaherpesvirus 68 (MHV-68 or gammaHV-68) model provides many advantages for studying virus-host interactions involved in gammaherpesvirus replication, including the role of cellular responses to infection. We examined the effects of cellular cyclooxygenase-2 (COX-2) and its by-product prostaglandin E(2) (PGE(2)) on MHV-68 gene expression and protein production following de novo infection of cultured cells. Western blot analyses revealed an induction of COX-2 protein in MHV-68-infected cells but not in cells infected with UV-irradiated MHV-68. Luciferase reporter assays demonstrated activation of the COX-2 promoter during MHV-68 replication. Two nonsteroidal anti-inflammatory drugs, a COX-2-specific inhibitor (NS-398) and a COX-1-COX-2 inhibitor (indomethacin), substantially reduced MHV-68 protein production in infected cells. Inhibition of viral protein expression and virion production by NS-398 was reversed in the presence of exogenous PGE(2). Global gene expression analysis using an MHV-68 DNA array showed that PGE(2) increased production of multiple viral gene products, and NS-398 inhibited production of many of the same genes. These studies suggest that COX-2 activity and PGE(2) production may play significant roles during MHV-68 de novo infection.


Assuntos
Gammaherpesvirinae/isolamento & purificação , Regulação Viral da Expressão Gênica , Genes Virais , Infecções por Herpesviridae/metabolismo , Isoenzimas/biossíntese , Prostaglandina-Endoperóxido Sintases/biossíntese , Animais , Linhagem Celular , Cricetinae , Ciclo-Oxigenase 2 , Dinoprostona/fisiologia , Indução Enzimática , Gammaherpesvirinae/efeitos dos fármacos , Gammaherpesvirinae/genética , Indometacina/farmacologia , Camundongos , Nitrobenzenos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Sulfonamidas/farmacologia
9.
J Virol ; 77(19): 10488-503, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12970434

RESUMO

Murine gammaherpesvirus 68 (MHV-68 [also referred to as gammaHV68]) is phylogenetically related to Kaposi's sarcoma-associated herpesvirus (KSHV [also referred to as HHV-8]) and Epstein-Barr virus (EBV). However, unlike KSHV or EBV, MHV-68 readily infects fibroblast and epithelial cell lines derived from several mammalian species, providing a system to study productive and latent infections as well as reactivation of gammaherpesviruses in vivo and in vitro. To carry out rapid genome-wide analysis of MHV-68 gene expression, we made DNA arrays containing nearly all of the known and predicted open reading frames (ORFs) of the virus. RNA obtained from an MHV-68 latently infected cell line, from cells lytically infected with MHV-68 in culture, and from the lung tissue of infected mice was used to probe the MHV-68 arrays. Using a tightly latent B-cell line (S11E), the MHV-68 latent transcription program was quantitatively described. Using BHK-21 cells and infected mice, we demonstrated that latent genes are transcribed during lytic replication and are relatively independent of de novo protein synthesis. We determined that the transcription profiles at the peak of lytic gene expression are similar in cultured fibroblast and in the lung of infected mice. Finally, the MHV-68 DNA arrays were used to examine the gene expression profile of a recombinant virus that overexpresses replication and transcription activator (RTA), C-RTA/MHV-68, during lytic replication in cell culture. The recombinant virus replicates faster then the parental strain and the DNA arrays revealed that nearly every MHV-68 ORF examined was activated by RTA overexpression. Examination of the gene expression patterns of C-RTA/MHV-68 over a time course led to the finding that the M3 promoter is RTA responsive in the absence of other viral factors.


Assuntos
Rhadinovirus/genética , Transcrição Gênica , Animais , Replicação do DNA , Perfilação da Expressão Gênica , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Proteínas Virais/biossíntese , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...