Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(12): 6411-6425, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306376

RESUMO

Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.


Assuntos
Bactérias , Thauera , Plasmídeos/genética , Sequência de Bases , Bactérias/genética , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Rhodocyclaceae/genética
2.
Appl Microbiol Biotechnol ; 103(1): 505-517, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30415426

RESUMO

Constructed wetlands (CWs) are well-established wastewater treatment technologies and applied for bioremediation of contaminated water. Despite the optimal performance of CWs, the understanding of the bacterial processes in the rhizosphere, where mainly microbial degradation processes take place, is still limited. In the present study, laboratory-scale CWs planted with Juncus effusus and running under controlled conditions were studied in order to evaluate removal efficiency of dimethylphenols (DMPs), also in comparison to an unplanted bed. Next to removal rates, the bacterial community structure, diversity, and distribution, their correlation with physiochemical parameters, and abundance of the phenol hydroxylase gene were determined. As a result, better removal performance of DMP isomers (3,4-, 3,5-, and 2,6-DMP added as singles compounds or in mixtures) and ammonium loads, together with a higher diversity index, bacterial number, and phenol hydroxylase gene abundance in Juncus effusus CW in comparison with the non-planted CW, indicates a clear rhizosphere effect in the experimental CWs. An enhancement in the DMP removal and the recovery of the phenol hydroxylase gene were found during the fed with the DMP mixture. In addition, the shift of bacterial community in CWs was found to be DMP isomer dependent. Positive correlations were found between the bacteria harboring the phenol hydroxylase gene and communities present with 3,4-DMP and 3,5-DMP isomers, but not with the community developed with 2,6-DMP. These results indicate that CWs are highly dynamic ecosystems with rapid changes in bacterial communities harboring functional catabolic genes.


Assuntos
Consórcios Microbianos/fisiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Áreas Alagadas , Xilenos/isolamento & purificação , Biodegradação Ambiental , Biodiversidade , Genes Bacterianos , Isomerismo , Laboratórios , Metabolismo/genética , Oxigenases de Função Mista/genética , Poaceae , Análise Espaço-Temporal , Poluentes Químicos da Água/química , Xilenos/química
3.
BMC Microbiol ; 18(1): 108, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189831

RESUMO

BACKGROUND: Dimethylphenols (DMP) are toxic compounds with high environmental mobility in water and one of the main constituents of effluents from petro- and carbochemical industry. Over the last few decades, the use of constructed wetlands (CW) has been extended from domestic to industrial wastewater treatments, including petro-carbochemical effluents. In these systems, the main role during the transformation and mineralization of organic pollutants is played by microorganisms. Therefore, understanding the bacterial degradation processes of isolated strains from CWs is an important approach to further improvements of biodegradation processes in these treatment systems. RESULTS: In this study, bacterial isolation from a pilot scale constructed wetland fed with phenols led to the identification of Delftia sp. LCW as a DMP degrading strain. The strain was able to use the o-xylenols 3,4-DMP and 2,3-DMP as sole carbon and energy sources. In addition, 3,4-DMP provided as a co-substrate had an effect on the transformation of other four DMP isomers. Based on the detection of the genes, proteins, and the inferred phylogenetic relationships of the detected genes with other reported functional proteins, we found that the phenol hydroxylase of Delftia sp. LCW is induced by 3,4-DMP and it is responsible for the first oxidation of the aromatic ring of 3,4-, 2,3-, 2,4-, 2,5- and 3,5-DMP. The enzyme may also catalyze both monooxygenation reactions during the degradation of benzene. Proteome data led to the identification of catechol meta cleavage pathway enzymes during the growth on ortho DMP, and validated that cleavage of the aromatic rings of 2,5- and 3,5-DMPs does not result in mineralization. In addition, the tolerance of the strain to high concentrations of DMP, especially to 3,4-DMP was higher than that of other reported microorganisms from activated sludge treating phenols. CONCLUSIONS: LCW strain was able to degraded complex aromatics compounds. DMPs and benzene are reported for the first time to be degraded by a member of Delftia genus. In addition, LCW degraded DMPs with a first oxidation of the aromatic rings by a phenol hydroxylase, followed by a further meta cleavage pathway. The higher resistance to DMP toxicity, the ability to degrade and transform DMP isomers and the origin as a rhizosphere bacterium from wastewater systems, make LCW a suitable candidate to be used in bioremediation of complex DMP mixtures in CWs systems.


Assuntos
Delftia/metabolismo , Fenóis/química , Fenóis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Delftia/classificação , Delftia/genética , Delftia/isolamento & purificação , Isomerismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Filogenia , Microbiologia do Solo , Áreas Alagadas
4.
PLoS One ; 12(4): e0174750, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28369150

RESUMO

Previously, Planted Fixed-Bed Reactors (PFRs) have been used to investigate microbial toluene removal in the rhizosphere of constructed wetlands. Aerobic toluene degradation was predominant in these model systems although bulk redox conditions were hypoxic to anoxic. However, culture-independent approaches indicated also that microbes capable of anaerobic toluene degradation were abundant. Therefore, we aimed at isolating anaerobic-toluene degraders from one of these PFRs. From the obtained colonies which consisted of spirilli-shaped bacteria, a strain designated 15-1 was selected for further investigations. Analysis of its 16S rRNA gene revealed greatest similarity (99%) with toluene-degrading Magnetospirillum sp. TS-6. Isolate 15-1 grew with up to 0.5 mM of toluene under nitrate-reducing conditions. Cells reacted to higher concentrations of toluene by an increase in the degree of saturation of their membrane fatty acids. Strain 15-1 contained key genes for the anaerobic degradation of toluene via benzylsuccinate and subsequently the benzoyl-CoA pathway, namely bssA, encoding for the alpha subunit of benzylsuccinate synthase, bcrC for subunit C of benzoyl-CoA reductase and bamA for 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase. Finally, most members of a clone library of bssA generated from the PFR had highest similarity to bssA from strain 15-1. Our study provides insights about the physiological capacities of a strain of Magnetospirillum isolated from a planted system where active rhizoremediation of toluene is taking place.


Assuntos
Magnetospirillum/isolamento & purificação , Magnetospirillum/metabolismo , Rizosfera , Tolueno/metabolismo , Áreas Alagadas , Carbono/metabolismo , Carbono-Carbono Liases/genética , Ácidos Graxos/metabolismo , Magnetospirillum/genética , Lipídeos de Membrana/metabolismo , Nitratos/metabolismo , Oxigênio/metabolismo , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Homologia de Sequência de Aminoácidos , Microbiologia do Solo , Tolueno/toxicidade , Microbiologia da Água
5.
Environ Microbiol ; 18(4): 1176-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26616584

RESUMO

In constructed wetlands, organic pollutants are mainly degraded via microbial processes. Helophytes, plants that are commonly used in these systems, provide oxygen and root exudates to the rhizosphere, stimulating microbial degradation. While the treatment performance of constructed wetlands can be remarkable, a mechanistic understanding of microbial degradation processes in the rhizosphere is still limited. We investigated microbial toluene removal in a constructed wetland model system combining 16S rRNA gene sequencing, metaproteomics and (13) C-toluene in situ protein-based stable isotope probing (protein-SIP). The rhizospheric bacterial community was dominated by Burkholderiales and Rhizobiales, each contributing about 20% to total taxon abundance. Protein-SIP data revealed that the members of Burkholderiaceae, the proteins of which showed about 73% of (13) C-incorporation, were the main degraders of toluene in the planted system, while the members of Comamonadaceae were involved to a lesser extent in degradation (about 64% (13) C-incorporation). Among the Burkholderiaceae, one of the key players of toluene degradation could be assigned to Ralstonia pickettii. We observed that the main pathway of toluene degradation occurred via two subsequent monooxygenations of the aromatic ring. Our study provides a suitable approach to assess the key processes and microbes that are involved in the degradation of organic pollutants in complex rhizospheric ecosystems.


Assuntos
Burkholderiaceae/metabolismo , Comamonadaceae/metabolismo , Rizosfera , Tolueno/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Burkholderiaceae/genética , Comamonadaceae/genética , Hidroxilação , RNA Ribossômico 16S/genética , Microbiologia do Solo
6.
Appl Environ Microbiol ; 79(18): 5550-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835177

RESUMO

Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us.


Assuntos
Actinomycetales/metabolismo , Antibacterianos/metabolismo , Sulfonamidas/metabolismo , Biotransformação , Poluentes Ambientais/metabolismo , Hidroxilação , Redes e Vias Metabólicas , NAD/metabolismo
7.
Biodegradation ; 22(5): 973-82, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21318475

RESUMO

Cultivation-independent analyses were applied to study the structural diversity of the bacterial community which developed in groundwater inoculated microcosms actively metabolizing monochlorobenzene (MCB) under anaerobic conditions. Addition of (13)C-labelled MCB demonstrated that the community produced (13)CO(2) as a metabolite at slightly increasing rates over a period of 1,051 days while no (13)C-methane evolved. Genetic profiles of partial 16S rRNA genes generated with the single-strand conformation polymorphism (SSCP) technique by PCR from directly extracted total DNA revealed that, despite the long incubation period, six replicate microcosms were characterized by almost the same microbial members. Nine distinguishable contributors to the SSCP-profiles were characterized by DNA sequencing, revealing the presence of different members from the phyla Proteobacteria, Fibrobacteres and from the candidate division OD1. DNA-stable isotope probing (SIP) was applied to distinguish the actual MCB metabolizing bacteria from the other community members. This study reveals for the first time the structural diversity of an anaerobic MCB metabolizing bacterial community. However, it also demonstrates the limitations of SIP to detect bacteria slowly metabolizing carbon sources under anaerobic conditions.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Clorobenzenos/metabolismo , DNA Bacteriano/genética , Anaerobiose , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Biodiversidade , Isótopos de Carbono/química , DNA Bacteriano/química , Água Doce/microbiologia , Marcação por Isótopo , Metano/metabolismo , Dados de Sequência Molecular , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
8.
Appl Environ Microbiol ; 77(3): 1086-96, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21148686

RESUMO

Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.


Assuntos
Biodegradação Ambiental , Fracionamento Químico/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Éteres Metílicos/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Aerobiose , Biofilmes , Biotecnologia/métodos , Isótopos de Carbono/química , Sistema Enzimático do Citocromo P-450/genética , Alemanha , Hidrogênio/química , Oxirredução
9.
Appl Environ Microbiol ; 76(20): 6715-23, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709833

RESUMO

Pseudomonas putida mt-2 harbors the TOL plasmid (pWWO), which contains the genes encoding the enzymes necessary to degrade toluene aerobically. The xyl genes are clustered in the upper operon and encode the enzymes of the upper pathway that degrade toluene to benzoate, while the genes encoding the enzymes of the lower pathway (meta-cleavage pathway) that are necessary for the conversion of benzoate to tricarboxylic acid cycle intermediates, are encoded in a separate operon. In this study, the effects of oxygen availability and oscillation on the expression of catabolic genes for enzymes involved in toluene degradation were studied by using P. putida mt-2 as model bacterium. Quantitative reverse transcription-PCR was used to detect and quantify the expression of the catabolic genes xylM (a key gene of the upper pathway) and xylE (a key gene of the lower pathway) in cultures of P. putida mt-2 that were grown with toluene as a carbon source. Toluene degradation was shown to have a direct dependency on oxygen concentration, where gene expression of xylM and xylE decreased due to oxygen depletion during degradation. Under oscillating oxygen concentrations, P. putida mt-2 induced or downregulated xylM and xylE genes according to the O2 availability in the media. During anoxic periods, P. putida mt-2 decreased the expression of xylM and xylE genes, while the expression of both xylM and xylE genes was immediately increased after oxygen became available again in the medium. These results suggest that oxygen is not only necessary as a cosubstrate for enzyme activity during the degradation of toluene but also that oxygen modulates the expression of the catabolic genes encoded by the TOL plasmid.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Oxigênio/metabolismo , Plasmídeos , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Tolueno/metabolismo , Aerobiose , Animais , Proteínas de Bactérias/biossíntese , Benzoatos/metabolismo , Ácidos Carboxílicos/metabolismo , Perfilação da Expressão Gênica , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...