Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(38)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34111853

RESUMO

In this work, we studied the impact of magnetic nanoparticles (MNPs) interactions with HeLa cells when they are exposed to high frequency alternating magnetic field (AMF). Specifically, we measured the nanobiomechanical properties of cell interfaces by using atomic force microscopy (AFM). Magnetite (Fe3O4) MNPs were synthesized by coprecipitation and encapsulated with silica (SiO2): Fe3O4@SiO2and functionalized with amino groups (-NH2): Fe3O4@SiO2-NH2, by sonochemical processing. HeLa cells were incubated with or without MNPs, and then exposed to AMF at 37 °C. A biomechanical analysis was then performed through AFM, providing the Young's modulus and stiffness of the cells. The statistical analysis (p < 0.001) showed that AMF application or MNPs interaction modified the biomechanical behavior of the cell interfaces. Interestingly, the most significant difference was found for HeLa cells incubated with Fe3O4@SiO2-NH2and exposed to AMF, showing that the local heat of these MNPs modified their elasticity and stiffness.


Assuntos
Fenômenos Biomecânicos/fisiologia , Fenômenos Fisiológicos Celulares/fisiologia , Nanopartículas de Magnetita/química , Dióxido de Silício/química , Módulo de Elasticidade/fisiologia , Células HeLa , Humanos , Microscopia de Força Atômica , Nanotecnologia , Propriedades de Superfície
2.
J Vis Exp ; (170)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33871455

RESUMO

The method presented in this paper aims to automate Bio-AFM experiments and the recording of force curves. Using this method, it is possible to record forces curves on 1000 cells in 4 hours automatically. To maintain a 4 hour analysis time, the number of force curves per cell is reduced to 9 or 16. The method combines a Jython based program and a strategy for assembling cells on defined patterns. The program, implemented on a commercial Bio-AFM, can center the tip on the first cell of the array and then move, automatically, from cell to cell while recording force curves on each cell. Using this methodology, it is possible to access the biophysical parameters of the cells such as their rigidity, their adhesive properties, etc. With the automation and the large number of cells analyzed, one can access the behavior of the cell population. This is a breakthrough in the Bio-AFM field where data have, so far, been recorded on only a few tens of cells.


Assuntos
Candida albicans/citologia , Microscopia de Força Atômica/métodos , Automação , Biofísica
3.
Micromachines (Basel) ; 8(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30400482

RESUMO

There are a growing number of small children-as well as adults-with mental disabilities (including elderly citizens with Alzheimer's disease or other forms of age-related dementia) that are getting lost in rural and urban areas for various reasons. Establishing their location within the first 72 h is crucial because lost people are exposed to all kinds of adverse conditions and in the case of the elderly, this is further aggravated if prescribed medication is needed. Herein we describe a non-invasive, low-cost electronic device that operates constantly, keeping track of time, the geographical location and the identification of the subject using it. The prototype was made using commercial low-cost electronic components. This electronic device shows high connectivity in open and closed areas and identifies the geographical location of a lost subject. We freely provide the software and technical diagrams of the prototypes.

4.
Micromachines (Basel) ; 8(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30400538

RESUMO

Micropatterning and manipulation of mammalian and bacterial cells are important in biomedical studies to perform in vitro assays and to evaluate biochemical processes accurately, establishing the basis for implementing biomedical microelectromechanical systems (bioMEMS), point-of-care (POC) devices, or organs-on-chips (OOC), which impact on neurological, oncological, dermatologic, or tissue engineering issues as part of personalized medicine. Cell patterning represents a crucial step in fundamental and applied biological studies in vitro, hence today there are a myriad of materials and techniques that allow one to immobilize and manipulate cells, imitating the 3D in vivo milieu. This review focuses on current physical cell patterning, plus chemical and a combination of them both that utilizes different materials and cutting-edge micro-nanofabrication methodologies.

5.
Microsc Microanal ; 20(5): 1479-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25156941

RESUMO

Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors. MWCNT were simultaneously purified and functionalized by an acid mixture involving HNO3-H2SO4 and amyloglucosidase attached onto the chemically modified MWCNT surface. A 49.0% decrease in its enzymatic activity was observed. Raw, purified, and enzyme-modified MWCNTs were analyzed by scanning and transmission electron microscopy and Raman and X-ray photoelectron spectroscopy. These studies confirmed purification and functionalization of the CNTs. Finally, cyclic voltammetry electrochemistry was used for electrical characterization of CNTs, which showed promising results that can be useful for construction of electrochemical biosensors applied to biological areas.


Assuntos
Técnicas Biossensoriais , Glucana 1,4-alfa-Glucosidase/metabolismo , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Enzimas Imobilizadas/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Análise Espectral Raman
6.
Carbohydr Polym ; 87(1): 289-299, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34662963

RESUMO

The aim of this work is to characterize the microstructure of chitosan and alginate edible films by microscopy techniques and texture image analysis. Edible films were obtained by solution casting and solvent evaporation. The microscopy techniques used in this work were: light, environmental scanning electron and atomic force microscopy. Textural features and fractal dimension were extracted from the images. Entropy and fractal dimension were more useful to evaluate the complexity and roughness of films. The highest values of entropy and fractal dimension corresponded to alginate/chitosan, followed of alginate and chitosan films. An entropy/fractal dimension ratio, proposed here, was useful to characterize the degree of image complexity and roughness of edible films at different magnifications. It was possible to postulate that microscopy techniques combined with texture image analysis are efficient tools to quantitatively evaluate the surface morphology of edible films made of chitosan and alginate.

7.
Int J Nanomedicine ; 5: 661-8, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20856842

RESUMO

We present a technique for the label-free detection and recognition of cancer biomarkers using metal nanoislands intended to be integrated in a novel type of nanobiosensor. His-tagged (scFv)-F7N1N2 is the antibody fragment which is directly immobilized, by coordinative bonds, onto ~5 nm nickel islands, then deposited on the surface of a quartz crystal of a quartz crystal microbalance (QCM) to validate the technique. Biomarker GTPase RhoA was investigated because it has been found to be overexpressed in various tumors and because we have recently isolated and characterized a new conformational scFv which selectively recognizes the active form of RhoA. We implemented a surface chemistry involving an antibiofouling coating of polyethylene glycol silane (PEG-silane) (<2 nm thick) and Ni nanoislands to reach a label-free detection of the active antigen conformation of RhoA, at various concentrations. The methodology proposed here proves the viability of the concept by using Ni nanoislands as an anchoring surface layer enabling the detection of a specific conformation of a protein, identified as a potential cancer biomarker. Hence, this novel methodology can be transferred to a nanobiosensor to detect, at lower time consumption and with high sensitivity, specific biomolecules.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas , Níquel , Técnicas de Microbalança de Cristal de Quartzo , Anticorpos Imobilizados , Biomarcadores Tumorais/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas In Vitro , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanomedicina , Polietilenoglicóis , Silanos , Propriedades de Superfície , Proteína rhoA de Ligação ao GTP/análise , Proteína rhoA de Ligação ao GTP/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...