Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Food Chem ; 451: 139506, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38703733

RESUMO

This study aimed to characterize and evaluate the in vitro bioactive properties of green banana pulp (GBPF), peel (GBPeF), and mixed pulp/peel flours M1 (90/10) and M2 (80/20). Lipid concentration was higher in GBPeF (7.53%), as were the levels of free and bound phenolics (577 and 653.1 mg GAE/100 g, respectively), whereas the resistant starch content was higher in GBPF (44.11%). Incorporating up to 20% GBPeF into the mixed flour had a minor effect on the starch pasting properties of GBPF. GBPeF featured rutin and trans-ferulic acid as the predominant free and bound phenolic compounds, respectively. GBPF presented different major free phenolics, though it had similar bound phenolics to GBPeF. Both M1 and M2 demonstrated a reduction in intracellular reactive oxygen species (ROS) generation. Consequently, this study validates the potential of green banana mixed flour, containing up to 20% GBPeF, for developing healthy foods and reducing post-harvest losses.

2.
Food Res Int ; 176: 113739, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163694

RESUMO

Sorghum is a gluten-free cereal commonly used in foods, and its consumption has been associated with the prevention of human chronic conditions such as obesity and cancer, due to the presence of dietary fiber and phenolic compounds. This study aimed to evaluate, for the first time, the antiproliferative, antioxidant, anti-adhesion, anti-invasion, and antimalarial activities of phenolic extracts from toasted white and tannin sorghum flours to understand how different phenolic profiles contribute to sorghum biological activities. Water and 70 % ethanol/water (v/v), eco-friendly solvents, were used to obtain the phenolic extracts of toasted sorghum flours, and their phenolic profile was analyzed by UPLC-MSE. One hundred forty-five (145) phenolic compounds were identified, with 23 compounds common to all extracts. The solvent type affected the phenolic composition, with aqueous extract of both white sorghum (WSA) and tannin sorghum (TSA) containing mainly phenolic acids. White sorghum (WSE) and tannin sorghum (TSE) ethanolic extracts exhibited a higher abundance of flavonoids. WSE demonstrated the lowest IC50 on EA.hy926 (IC50 = 46.6 µg/mL) and A549 cancer cells (IC50 = 33.1 µg/mL), while TSE showed the lowest IC50 (IC50 = 70.8 µg/mL) on HCT-8 cells (human colon carcinoma). Aqueous extracts also demonstrated interesting results, similar to TSE, showing selectivity for cancer cells at higher IC50 concentrations. All sorghum extracts also reduced the adhesion and invasion of HCT-8 cells, suggesting antimetastatic potential. WSE, rich in phenolic acids and flavonoids, exhibited greater toxicity to both the W2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) strains of Plasmodium falciparum (IC50 = 8 µg GAE/mL and 22.9 µg GAE/mL, respectively). These findings underscore the potential health benefits of toasted sorghum flours, suggesting diverse applications in the food industry as a functional ingredient or even as an antioxidant supplement. Moreover, it is suggested that, besides the phenolic concentration, the phenolic profile is important to understand the health benefits of sorghum flours.


Assuntos
Antimaláricos , Sorghum , Humanos , Taninos , Antioxidantes/farmacologia , Antioxidantes/análise , Antimaláricos/farmacologia , Extratos Vegetais/farmacologia , Grão Comestível/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fenóis/análise , Flavonoides , Solventes , Água , Cloroquina
3.
Br J Nutr ; 131(6): 987-996, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37955051

RESUMO

Macauba (Acrocomia aculeata) is a palm tree native from Brazil, whose pulp is rich in oil that has a high content of oleic acid and carotenoids. Macauba pulp oil can bring health benefits due to its bioactive compounds; however, its effects on gut health are unknown. Thus, the objective of this study was to evaluate the effect of macauba pulp oil on the intestinal health in mice fed a high-fat (HF) diet. Male C57BL1/6 mice were randomly divided into three groups (10 animals/group): control diet, HF diet and HF diet with 4 % of macauba pulp oil (HFM). Concentration of short-chain fatty acids (SCFA), faecal pH and histomorphometric analysis of the colon were performed. Content of colon samples was used on microbiome analysis using 16S rRNA amplicon sequencing. Animals from the HFM group had higher butyric acid content and goblet cells number, greater circular and longitudinal muscle layer and higher α-diversity compared with the HF group. Moreover, consumption of MPO reduced Desulfobacterota phylum, Ruminococcaceae, Oscillospiraceae, Prevotellaceae, Bifidobacteriaceae family, Faecalibacterium, Prevotella, Ruminococcus and Enterorhabdus genus. Therefore, macauba pulp oil was able to modulate the gut microbiota and enhance intestinal barrier morphology, showing preventive effects on gut dysbiosis in mice fed a HF diet.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Células Caliciformes , RNA Ribossômico 16S , Proliferação de Células , Camundongos Endogâmicos C57BL
4.
Food Res Int ; 175: 113740, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128992

RESUMO

The consumption of diets high in saturated fat can induce damages in liver morphology and function, which leads to increased inflammation, oxidative stress, and hepatic steatosis. Chia seed (Salvia hispanica L.) is rich in protein, which provides bioactive peptides with potential benefits, including antioxidant and anti-inflammatory functions. Then, this study aimed to analyze the effect of digested total protein (DTP) of chia on inflammation, oxidative stress, and morphological changes in liver of C57BL/6 mice fed a diet rich in saturated fat. Male C57BL/6 mice (n = 8/group), 8 weeks old, were fed standard diet (AIN), high-fat diet (HF), standard diet added digested protein (AIN + DTP) or high-fat diet added digested protein (HF + DTP) for 8 weeks. In animals fed a high-fat diet, chia DTP was able to reduce weight gain, food efficiency ratio and hepatosomatic index. In addition, it presented antioxidant capacity, which reduced catalase activity and lipid peroxidation. DTP was also able to reduce hepatic inflammation by reducing p65-NFκB expression and IL-1ß expression and quantification. The APSPPVLGPP peptide present in chia DTP presented binding capacity with PPAR-α, which contributed to the reduction of hepatic fat accumulation evidenced by histological analysis. Thus, chia DTP improved hepatic inflammatory and histological parameters, being an effective food in reducing the liver damage caused by a high-fat diet.


Assuntos
Antioxidantes , Dieta Hiperlipídica , Animais , Masculino , Camundongos , Antioxidantes/farmacologia , Ácidos Graxos , Inflamação , Camundongos Endogâmicos C57BL , Peptídeos
5.
Foods ; 12(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37685193

RESUMO

In recent years, there has been a growing demand for gluten-free and functional products, driven by consumer preferences for healthier and more diverse food choices. Therefore, there is a need to explore new ingredients that can be used as alternatives to traditional gluten-containing grains. Thus, this work evaluated the physical, chemical, technological, and sensorial properties of extrudates and cookies from composite tannin sorghum (rich in resistant starch) and white cowpea flours. Extrudates and cookies were produced from a composite flour made of sorghum and cowpea, at a sorghum:cowpea flour ratio of 70:30, 50:50, and 30:70. Then, raw flours, cookies, and extrudates were characterized (dietary fiber, resistant starch, proteins, antioxidant capacity, pasting properties, etc.). Results obtained for particle size distribution and bulk density indicated that the particles increased and the color changed with the addition of cowpea flour. The raw tannin sorghum flour had a higher resistant starch concentration (36.3%) and antioxidant capacity (211.2 µmolTE/g), whereas cowpea flour had higher levels of proteins (18.7%) and dietary fiber (20.1%). This difference in the raw flour composition contributed to the nutritional value of the extrudates and cookies, especially the cookies which undergo dry heat and had higher retention of resistant starch and antioxidants. Moreover, sorghum flour presented a higher tendency to retrograde (high setback), which was decreased by the addition of cowpea flour. Overall acceptance and intention to purchase were higher for extrudates with 100% sorghum flour (6.52 and 68.3%, respectively) and cookies with 70% cowpea flour (7.03 and 76.7%, respectively). Therefore, nutritious and functional gluten-free extrudates and cookies, of good acceptability, can be produced from composite tannin sorghum and white cowpea flours.

6.
Food Res Int ; 172: 113095, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689868

RESUMO

A diet rich in sugar and fat can promote metabolic disorders development, especially in the intestine. Chia flour (Salvia hispanica. L) is a source of dietary fiber, alpha-linolenic fatty acid (ALA), bioactive peptides, and phenolics, promoting health benefits. This study aimed to analyze chia flour's effect on gut microbiota modulation and intestinal health in adult male Wistar rats fed a high-fat and high-fructose (HFHF) diet. Male Wistar rats (n = 10/group) were fed the diets standard (AIN-93M) or HFHF (31% saturated fat and 20% fructose) in the first phase to induce metabolic disorders. In the second phase, the rats were fed AIN-93M, HFHF, or HFHF plus 14.7% chia flour (HFHF + CF) for 10 weeks. The consumption of chia flour increased the ALA (3.24 ± 0.24) intake and significantly improved immunoglobulin A (IgA) levels (1126.00 ± 145.90), goblet cells number (24.57 ± 2.76), crypt thickness (34.37 ± 5.86), crypt depth (215.30 ± 23.19), the longitudinal muscle layer (48.11 ± 5.04), cecum weight (4.39 ± 0.71), Shannon index (p < 0.05), and significantly increased the production of acetic (20.56 ± 4.10) and butyric acids (5.96 ± 1.50), Monoglobus sp., Lachnospiraceae sp., and Prevotellaceae sp. abundance. Furthermore, chia significantly reduced the cecal pH content (7.54 ± 1.17), body mass index (0.62 ± 0.03) and weight (411.00 ± 28.58), and Simpson index (p < 0.05). Therefore, chia intake improved intestinal health parameters and functionality in rats with metabolic disorders, which demonstrates to be an effective strategy for gut microbiota modulation.


Assuntos
Farinha , Microbioma Gastrointestinal , Masculino , Ratos , Animais , Ratos Wistar , Frutose , Salvia hispanica , Dieta
7.
Nutrients ; 15(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630833

RESUMO

Phenolic compounds can act as a substrate for colonic resident microbiota. Once the metabolites are absorbed and distributed throughout the body, they can have diverse effects on the gut. The objective of this study was to evaluate the effects of the intra-amniotic administration of a chia phenolic extract on intestinal inflammation, intestinal barrier, brush border membrane functionality, intestinal microbiota, and morphology in vivo (Gallus gallus model). Cornish-cross fertile broiler eggs, at 17 days of embryonic incubation, were separated into groups as follows: non-injected (NI; this group did not receive an injection); 18 MΩ H2O (H2O; injected with ultrapure water), and 10 mg/mL (1%) chia phenolic extract (CPE; injected with phenolic extract diluted in ultrapure water). Immediately after hatch (21 days), chickens were euthanized and their small intestine, cecum, and cecum content were collected and analyzed. The chia phenolic extract reduced the tumor necrosis factor-alpha (TNF-α) and increased the sucrose isomaltase (SI) gene expression, reduced the Bifidobacterium and E. coli populations, reduced the Paneth cell diameter, increased depth crypt, and maintained villus height compared to the non-injected control group. Chia phenolic extract may be a promising beneficial compound for improving intestinal health, demonstrating positive changes in intestinal inflammation, functionality, microbiota, and morphology.


Assuntos
Galinhas , Escherichia coli , Animais , Bifidobacterium , Biomarcadores , Inflamação/tratamento farmacológico
8.
Food Funct ; 14(16): 7457-7468, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37486027

RESUMO

Chia is a functional food because of its positive impact on reducing the risk of metabolic diseases. These benefits are due to its nutritional composition as a source of dietary fiber and bioactive compounds. In our previous study, chia consumption increased the richness of the microbiota and the production of short chain fatty acids (SCFAs) when consumed by male Wistar rats, so, the objective of this study was to assess the effects of the consumption of chia with a high fat diet on gut health in female Wistar rats. 32 adult female Wistar rats were allocated into four groups and received one of the following diets: standard diet (SD), standard diet + chia (SDC), high fat diet (HFD) or high fat diet + chia (HFDC) for 8 weeks. At the end of the study, the intestinal microbiota, SCFA content, cecum content pH, immunoglobulin A (IgA) quantification and brush border membrane functionality were evaluated. There was no difference in the relative abundance of the gut microbiota, but chia consumption increased the microbial richness and diversity, increased the production of acetic and butyric acids in the SDC group and propionic acid in the HFD group, and decreased the pH of cecal content. The HFDC group demonstrated a lower IgA concentration compared to the HFD group. The SDC group increased SI and AP gene expression and decreased SGLT1 and PepT1 compared to the SD group. The consumption of chia can be beneficial for the functionality of the microbiota, improving SCFAs and intestinal pH, and the effects of chia in the microbiota can be more pronounced in HFD.


Assuntos
Dieta Hiperlipídica , Propionatos , Animais , Feminino , Masculino , Ratos , Ácidos Graxos Voláteis/metabolismo , Farinha , Fígado/metabolismo , Propionatos/metabolismo , Ratos Wistar
9.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450500

RESUMO

Carotenoids have anti-inflammatory and antioxidant properties, being a potential bioactive compound for gut health. The objective of this systematic review was to investigate the effects of carotenoids on gut microbiota, gut barrier, and inflammation in healthy animals. The systematic search from PubMed, Scopus, and Lilacs databases were performed up to March 2023. The final screening included thirty studies, with different animal models (mice, rats, pigs, chicks, drosophila, fish, and shrimp), and different carotenoid sources (ß-carotene, lycopene, astaxanthin, zeaxanthin, lutein, and fucoxanthin). The results suggested that carotenoids seem to act on gut microbiota by promoting beneficial effects on intestinal bacteria related to both inflammation and SCFA production; increase tight junction proteins expression, important for reducing intestinal permeability; increase the mucins expression, important in protecting against pathogens and toxins; improve morphological parameters important for digestion and absorption of nutrients; and reduce pro-inflammatory and increase anti-inflammatory cytokines. However, different carotenoids had distinct effects on gut health. In addition, there was heterogeneity between studies regarding animal model, duration of intervention, and doses used. This is the first systematic review to address the effects of carotenoids on gut health. Further studies are needed to better understand the effects of carotenoids on gut health.

10.
Food Funct ; 14(12): 5678-5689, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37272597

RESUMO

Millet is a promising cereal with high amounts of dietary fibre and protein, and in addition, bioactive compounds with health-promoting functional properties. This study aimed to evaluate the effect of germinated and cooked whole millet flour (Pennisetum glaucum (L.) R. Br.) on protein quality, biochemical profile and intestinal health in vivo. Thirty-two male Wistar rats (21 days old) were separated into four groups, which received a casein control diet (CC; n = 8), a free protein diet (aproteic; n = 8) and two treatment diets: non-germinated millet (NM; n = 8) and germinated millet (GM; n = 8) for 29 days. The whole millet flours presented an adequate essential amino acid profile, except for lysine. The GM group presented a higher protein efficiency ratio and net protein ratio compared to the NM group. Weight gain, Lee index, and food efficiency ratio were lower in the treatment groups, compared to the control group. The GM group had lower plasma glucose, uric acid, cholesterol, and faecal pH compared to the other groups. The treatment groups presented lower triglyceride levels, higher levels of acetic and propionic acids, a larger thickness and depth of the colonic crypts, and a higher expression of PepT1 genes than the CC group. In conclusion, the millet flours demonstrated potential for controlling the lipid profile and biometric measurements. Additionally, the whole germinated millet flour provided better protein quality and improved intestinal morphology and functionality. These results indicate that the consumption of millet could be increased in human food, and considering its potential health benefits, it could be an alternative for dietary diversification, and germination is a good processing option.


Assuntos
Farinha , Pennisetum , Masculino , Humanos , Ratos , Animais , Farinha/análise , Pennisetum/química , Milhetes , Ratos Wistar , Culinária , Proteínas
11.
Food Res Int ; 170: 112917, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316039

RESUMO

Blackcurrant press cake (BPC) is a source of anthocyanins, and this study evaluated the bioactivity and gut microbiota modulation of blackcurrant diets with or without 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in rats. In colon cancer-induced rats (CRC), BPC at the highest dosages increased pro-inflammatory parameters and the expression of anti-apoptotic cytokines, accentuating colon cancer initiation by aberrant crypts and morphological changes. Fecal microbiome analysis showed that BPC altered the composition and function of the gut microbiome. This evidence suggests that high doses of BPC act as a pro-oxidant, accentuating the inflammatory environment and CRC progression.


Assuntos
Neoplasias do Colo , Microbiota , Animais , Ratos , Antocianinas/farmacologia , Estresse Oxidativo , Inflamação , Veículos Farmacêuticos
12.
Nutrients ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111052

RESUMO

As a protein source, chia contains high concentrations of bioactive peptides. Probiotics support a healthy digestive tract and immune system. Our study evaluated the effects of the intra-amniotic administration of the hydrolyzed chia protein and the probiotic Lacticaseibacillus paracasei on intestinal bacterial populations, the intestinal barrier, the inflammatory response, and brush border membrane functionality in ovo (Gallus gallus). Fertile broiler (Gallus gallus) eggs (n = 9/group) were divided into 5 groups: (NI) non-injected; (H2O) 18 MΩ H2O; (CP) 10 mg/mL hydrolyzed chia protein; (CPP) 10 mg/mL hydrolyzed chia protein + 106 colony-forming unit (CFU) L. paracasei; (P) 106 CFU L. paracasei. The intra-amniotic administration was performed on day 17 of incubation. At hatching (day 21), the animals were euthanized, and the duodenum and cecum content were collected. The probiotic downregulated the gene expression of NF-κß, increased Lactobacillus and E. coli, and reduced Clostridium populations. The hydrolyzed chia protein downregulated the gene expression of TNF-α, increased OCLN, MUC2, and aminopeptidase, reduced Bifidobacterium, and increased Lactobacillus. The three experimental groups improved in terms of intestinal morphology. The current results suggest that the intra-amniotic administration of the hydrolyzed chia protein or a probiotic promoted positive changes in terms of the intestinal inflammation, barrier, and morphology, improving intestinal health.


Assuntos
Lacticaseibacillus paracasei , Salvia , Animais , Galinhas , Lacticaseibacillus , Salvia hispanica , Escherichia coli , Hidrolisados de Proteína/farmacologia , Lactobacillus , Salvia/química
13.
Nutrients ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904250

RESUMO

Macauba is a palm tree native to Brazil, which fruits are rich in oil. Macauba pulp oil has high contents of oleic acid, carotenoids, and tocopherol, but its effect on health is unknown. We hypothesized that macauba pulp oil would prevent adipogenesis and inflammation in mice. Thus, the purpose of this study was to evaluate the effects of macauba pulp oil on the metabolic changes in C57Bl/6 mice fed a high-fat diet. Three experimental groups were used (n = 10): control diet (CD), high-fat diet (HFD), and high-fat diet with macauba pulp oil (HFM). The HFM reduced malondialdehyde and increased SOD activity and antioxidant capacity (TAC), showing high positive correlations between total tocopherol, oleic acid, and carotenoid intakes and SOD activity (r = 0.9642, r = 0.8770, and r = 0.8585, respectively). The animals fed the HFM had lower levels of PPAR-γ and NF-κB, which were negatively correlated with oleic acid intake (r = -0.7809 and r = -0.7831, respectively). Moreover, the consumption of macauba pulp oil reduced inflammatory infiltrate, adipocyte number and length, (mRNA) TNF-α, and (mRNA) SREBP-1c in the adipose tissue, and it increased (mRNA) Adiponectin. Therefore, macauba pulp oil prevents oxidative stress, inflammation, and adipogenesis and increases antioxidant capacity; these results highlight its potential against metabolic changes induced by an HFD.


Assuntos
Antioxidantes , Dieta Hiperlipídica , Animais , Camundongos , Antioxidantes/farmacologia , Adipogenia , Ácido Oleico/farmacologia , Inflamação , Estresse Oxidativo , Tocoferóis , Carotenoides/farmacologia , Superóxido Dismutase , Camundongos Endogâmicos C57BL
14.
Eur J Nutr ; 62(2): 905-919, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36326862

RESUMO

PURPOSE: The present study aimed to evaluate the effect of chia flour associated with a high fat diet on intestinal health in female ovariectomized Wistar rats. METHODS: The study was conducted with 32 adult female ovariectomized Wistar rats, which were separated into four groups: standard diet (ST), standard diet with chia (STC), high fat diet (HF) and high fat diet with chia (HFC) for 18 weeks. Cecum content pH, short chain fatty acid content, brush border membrane functionality and morphology and the gut microbiota were evaluated. RESULTS: This study demonstrated that the consumption of chia flour increased the production of acetic and butyric acids, the longitudinal and circular muscle layers and crypt thickness. It also improved the expression of aminopeptidase (AP) and sucrose-isomaltase (SI) and decreased the cecum content pH. Further, the consumption of chia improved richness and decreased diversity of the microbiota. Operational Taxonomic Units (OTUs) clustering indicated difference between the ST and STC groups. In the linear discriminant analysis effect size (LEfSe) analysis, the Bacteroides genus and members of the Muribaculaceae and Lachnospiraceae families were enriched in the STC treatment group. The STC group demonstrated the enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways related to peptidoglycan and coenzyme A biosynthesis. CONCLUSION: Our results suggest that chia flour, which is rich in dietary fiber and phenolic compounds, presented potential properties to improve intestinal health.


Assuntos
Dieta Hiperlipídica , Farinha , Ratos , Feminino , Animais , Ratos Wistar , Farinha/análise , Intestinos , Ácidos Graxos Voláteis , Sementes
15.
Eur J Nutr ; 62(2): 647-657, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36181539

RESUMO

AIM: The present study aimed to investigate the effect of dry heated whole sorghum BRS 305 hybrid flour on the gut microbiota modulation and gut health of rats fed with a high-fat high-fructose diet (HFHF). METHODS: In phase I (8 weeks), 45-50 days, male Wistar rats, were separated into the AIN93-M group (n = 10; fed with normal diet) and HFHF group (n = 20; fed with diet rich in saturated and simple carbohydrate). In phase II (10 weeks), we maintained the AIN-93-M group, and the HFHF group was divided into the HFHF group (n = 10) and HFHF plus sorghum flour group (n = 10). RESULTS: The consumption of sorghum flour increased the circular muscle layer and propionic acid when compared to the HFHF group. The sequencing of the 16S rRNA gene of the cecal microbiota presented no changes in the α-diversity and ß-diversity between. However, the sorghum group exhibited higher relative abundance of Firmicutes and higher Firmicutes/Bacteroidetes ratio compared to the other experimental groups, and lower abundance of Bacteroidetes, compared to the HFHF group. Despite, sorghum increased the abundance of the genera Roseburia and Lachnospiraceae_NK4A136_group compared to the HFHF group. No differences were observed in total goblet cell number, crypt thickness and height, circular muscle layer, secretory IgA, and butyric acid between all groups. CONCLUSIONS: The consumption of sorghum flour can modulate the gut microbiota composition, abundance of SCFA-producing bacteria, and intestinal morphology even with consumption of an HFHF diet.


Assuntos
Microbioma Gastrointestinal , Sorghum , Ratos , Masculino , Animais , Ratos Wistar , Farinha , Frutose , RNA Ribossômico 16S , Dieta Hiperlipídica , Grão Comestível
16.
Crit Rev Food Sci Nutr ; 63(21): 4966-4978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34847784

RESUMO

Biofortified foods are a new approach to increase minerals in the diet, and evidence suggests that zinc (Zn) biofortification can improve Zn physiological status in humans. This systematic review aimed to answer the question: "What are the effects of the consumption of Zn biofortified foods on Zn status in humans?". This review was conducted according to PRISMA guidelines and registered in PROSPERO (CRD42021250566). PubMed, Cochrane, Scopus and Science Direct databases were searched for studies that evaluated the effects of Zn biofortified foods on Zn absorption. Of 4282 articles identified, nine remained after inclusion/exclusion criteria were applied. Limitations in study quality, external and internal validity (bias/confounding), and study power were evaluated. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. Of the nine articles included, five observed an increase in total Zn absorption, and one showed that Zn participated in the conversion of linoleic acid to dihomo-γ-linolenic acid. By increasing the amount of Zn in the food, Zn biofortification can reduce the phytate:Zn molar ratio and improve Zn absorption in humans. More studies are needed to clarify what portion of Zn biofortified foods/day is needed to achieve a significant effect on Zn status.


Assuntos
Alimentos Fortificados , Zinco , Humanos , Produtos Agrícolas , Biofortificação , Dieta
17.
Crit Rev Food Sci Nutr ; 63(27): 9017-9032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35403512

RESUMO

The benefits of dietary fiber on intestinal health have been well established. However, there is no consensus on the dietary fiber effects on mineral absorption. The objective of this systematic review is to discuss the evidence on the dietary fiber effects on iron absorption and iron status-related biomarkers. A comprehensive search of 3 databases: PubMed, Scopus and Web of Science was carried out. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, and a total of 32 studies were included with 9 of them clinical studies and 23 in vivo. The studies included assessment of dietary fiber in the form of fructo-oligosaccharides, galacto-oligosaccharides, inulin, pectin, guar gum, oligofructose, xylo-oligosaccharides, and mannan-oligosaccharide. Hemoglobin (n = 21) and fractional iron absorption (n = 6) were the most frequently reported outcomes. The results showed no significant correlations between consumption of dietary fiber to iron absorption/status-related biomarkers. However, the current evidence may not be substantial to invalidate the recommendation of dietary fiber as an agent to improve dietary iron bioavailability, and absorption. In conclusion, there is a need to conduct further clinical trials with long dietary fiber intervention focusing on population at high risk for iron deficiency.


Assuntos
Ferro , Oligossacarídeos , Oligossacarídeos/farmacologia , Intestinos , Fibras na Dieta , Inulina/farmacologia , Biomarcadores , Absorção Intestinal
18.
Nutrients ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36558393

RESUMO

The Western diet can negatively affect the gut microbiota and is associated with metabolic disorders. Kombucha, a tea fermented by a symbiotic culture of bacteria and yeast (SCOBY), is known for its bioactive properties and has become popular in the last years. In this study, we evaluated the effects of regular kombucha consumption on the gut microbiota and on outcomes related to the intestinal health of Wistar rats fed a high-fat high-fructose diet. After eight weeks receiving a standard diet (AIN-93M) (n = 10) or a high-fat and high-fructose diet (HFHF) (n = 30) to induce metabolic disorders, the animals were subdivided into four groups: AIN-93M (n = 10); HFHF (n = 10); GTK (HFHF + green tea kombucha (n = 10); and BTK (HFHF + black tea kombucha; n = 10) for 10 weeks. Although body composition did not differ among the groups, the HFHF diet was associated with metabolic alterations, and stimulated the growth of gram-negative bacteria such as Proteobacteria and Bacteroides. Kombucha ingestion could somewhat modulate the gut microbiota, attenuating the effects of a Western diet by increasing propionate production and favoring the growth of beneficial bacteria, such as Adlercreutzia in the GTK group. Our results suggest that regular kombucha consumption may be beneficial to intestinal health, which can be mostly attributed to its high content and diversity of phenolic compounds.


Assuntos
Camellia sinensis , Microbioma Gastrointestinal , Ratos , Animais , Chá/microbiologia , Ratos Wistar , Frutose/farmacologia , Polifenóis/farmacologia , Dieta Hiperlipídica/efeitos adversos
19.
Nutrients ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432591

RESUMO

(1) Background: Exhaustive exercise can induce muscle damage. The consumption of nutritional compounds with the ability to positively influence the oxidative balance and an exacerbated inflammatory process has been previously studied. However, little is known about the nutritional value of curcumin (CCM) when mixed with whey protein concentrate (WPC). This study was developed to evaluate the effect of CCM-added WPC on inflammatory and oxidative process control and histopathological consequences in muscle tissue submitted to an exhaustive swimming test (ET). (2) Methods: 48 animals were randomly allocated to six groups (n = 8). An ET was performed 4 weeks after the start of the diet and animals were euthanized 24 h post ET. (3) Results: WPC + CCM and CCM groups reduced IL-6 and increased IL-10 expression in muscle tissue. CCM reduced carbonyl protein after ET compared to standard AIN-93M ET and WPC + CCM ET diets. Higher nitric oxide concentrations were observed in animals that consumed WPC + CCM and CCM. Consumption of WPC + CCM or isolated CCM reduced areas of inflammatory infiltrate and fibrotic tissue in the muscle. (4) Conclusions: WPC + CCM and isolated CCM contribute to the reduction in inflammation and oxidative damage caused by the exhaustive swimming test.


Assuntos
Curcumina , Animais , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Estresse Oxidativo , Músculo Esquelético/metabolismo , Inflamação/metabolismo
20.
Nutrients ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432610

RESUMO

A direct correlation has been reported between excessive fat intake and the development and progression of various enteropathies. Plant foods may contain bioactive compounds and non-digestible dietary fiber, with potential to improve intestinal health. Chia is a good source of dietary fiber and bioactive compounds. Our study evaluated the role of chia flour associated with a high-fat diet (HFD) on colon histomorphometry, intestinal functionality and intestinal microbiome composition and function in Wistar rats. The study used 32 young male rats separated into four groups to receive a standard diet (SD) or HFD, with or without chia, for 35 days. At the end of the study, the cecum, cecal content and duodenum were collected. The consumption of chia increased the production of short-chain fatty acids and improved fecal moisture. Chia consumption improved the circular muscle layer in the SD group. The diversity and abundance of intestinal bacteria were not affected, but increased richness was observed in the microbiome of the SD+chia group. Moreover, chia consumption decreased the expression of proteins involved in intestinal functionality. Chia consumption improved intestinal morphology and functionality in young Wistar rats but was insufficient to promote significant changes in the intestinal microbiome in a short term of 35 days.


Assuntos
Dieta Hiperlipídica , Salvia , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Salvia hispanica , Sementes/química , Fibras na Dieta/farmacologia , Fibras na Dieta/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...