Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Biomater Adv ; 156: 213712, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056110

RESUMO

Selective COX-2 inhibitors such as etoricoxib (ETX) are potentially indicated for the treatment of intestinal inflammatory disorders. However, their systemic administration provokes some off-site secondary effects, decreasing the desirable local effectiveness. To circumvent such limitations, herein an ETX delivery system based on electrospun fibrous meshes (eFMs) was proposed. ETX at different concentrations (1, 2, and 3 mg mL-1) was loaded into eFMs, which not affect the morphology and the mechanical properties of this drug delivery system (DDS). The ETX showed a burst release within the first 12 h, followed by a faster release until 36 h, gradually decreasing over time. Importantly, the ETX studied concentrations were not toxic to human colonic cells (i.e. epithelial and fibroblast). Moreover, the DDS loading the highest concentration of ETX, when tested with stimulated human macrophages, promoted a reduction of PGE2, IL-8 and TNF-α secretion. Therefore, the proposed DDS may constitute a safe and efficient treatment of colorectal diseases promoted by inflammatory disorders associated with COX-2.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Sistemas de Liberação de Medicamentos , Doenças Inflamatórias Intestinais , Humanos , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona , Etoricoxib/administração & dosagem , Etoricoxib/farmacologia , Fator de Necrose Tumoral alfa , Doenças Inflamatórias Intestinais/tratamento farmacológico
2.
Pediatr Surg Int ; 40(1): 7, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999778

RESUMO

BACKGROUND: Patch repair of congenital diaphragmatic hernia (CDH) using Gore-Tex® is associated with infection, adhesions, hernia recurrence, long-term musculoskeletal sequels and poor tissue regeneration. To overcome these limitations, the performance of two novel biodegradable membranes was tested to repair CDH in a growing pig model. METHODS: Twelve male pigs were randomly assigned to 3 different groups of 4 animals each, determined by the type of patch used during thoracoscopic diaphragmatic hernia repair (Gore-Tex®, polycaprolactone electrospun membrane-PCLem, and decellularized human chorion membrane-dHCM). After 7 weeks, all animals were euthanized, followed by necropsy for diaphragmatic evaluation and histological analysis. RESULTS: Thoracoscopic defect creation and diaphragmatic repair were performed without any technical difficulty in all groups. However, hernia recurrence rate was 0% in Gore-Tex®, 50% in PCLem and 100% in dHCM groups. At euthanasia, Gore-Tex® patches appeared virtually unchanged and covered with a fibrotic capsule, while PCLem and dHCM patches were replaced by either floppy connective tissue or vascularized and floppy regenerated membranous tissue, respectively. CONCLUSION: Gore-Tex® was associated with a higher survival rate and lower recurrence. Nevertheless, the proposed biodegradable membranes were associated with better tissue integration when compared with Gore-Tex®.


Assuntos
Hérnias Diafragmáticas Congênitas , Politetrafluoretileno , Animais , Masculino , Diafragma , Hérnias Diafragmáticas Congênitas/cirurgia , Herniorrafia , Suínos
3.
Acta Biomater ; 168: 416-428, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467838

RESUMO

Radical prostatectomy is a highly successful treatment for prostate cancer, among the most prevalent manifestations of the illness. Damage of the cavernous nerve (CN) during prostatectomy is the main cause of postoperative erectile dysfunction (ED). In this study, the capability of a personalized bioactive fibrous membrane to regenerate injured CN was investigated. The fibrous membrane bioactivity is conferred by the selectively bound nerve growth factor (NGF) present in the rat urine. In a rat model of bilateral CN crush, the implanted bioactive fibrous membrane induces CN regeneration and restoration of erectile function, showing a significantly increased number of smooth muscle cells and content of endothelial and neuronal nitric oxide synthases (eNOS; nNOS). In addition, the bioactive fibrous membrane promotes nerve regeneration by increasing the number of myelinated axons and nNOS-positive cells, therefore reversing the CN fibrosis found in untreated rats or rats treated with a bare fibrous membrane. Therefore, this personalized regenerative strategy could overcome the recognized drawbacks of currently available treatments for CN injuries. It may constitute an effective treatment for prostate cancer patients suffering from ED after being subject to radical prostatectomy. STATEMENT OF SIGNIFICANCE: The present work introduces a unique strategy to address post-surgical ED resulting from CN injury during pelvic surgery (e.g., radical prostatectomy, radical cystoprostatectomy, abdominoperineal resection). It comprises a bioactive and cell-free fibrous implant, customized to enhance CN recovery. Pre-clinical results in a rat model of bilateral CN crush demonstrated that the bioactive fibrous implant can effectively heal injured CN, and restore penile structure and function. This implant selectively binds NGF from patient fluids (i.e. urine) due to its functionalized surface and high surface area. Moreover, its local implantation reduces adverse side effects. This tailored regenerative approach has the potential to revolutionize the treatment of ED in prostate cancer patients following radical prostatectomy, overcoming current treatment limitations.


Assuntos
Disfunção Erétil , Neoplasias da Próstata , Masculino , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Fator de Crescimento Neural/farmacologia , Ereção Peniana , Disfunção Erétil/etiologia , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/cirurgia , Pênis/lesões , Pênis/inervação , Prostatectomia/efeitos adversos , Neoplasias da Próstata/cirurgia , Modelos Animais de Doenças
4.
Mar Drugs ; 21(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233496

RESUMO

Fucoidan has been reported to present diverse bioactivities, but each extract has specific features from which a particular biological activity, such as immunomodulation, must be confirmed. In this study a commercially available pharmaceutical-grade fucoidan extracted from Fucus vesiculosus, FE, was characterized and its anti-inflammatory potential was investigated. Fucose was the main monosaccharide (90 mol%) present in the studied FE, followed by uronic acids, galactose, and xylose that were present at similar values (3.8-2.4 mol%). FE showed a molecular weight of 70 kDa and a sulfate content of around 10%. The expression of cytokines by mouse bone-marrow-derived macrophages (BMDMs) revealed that the addition of FE upregulated the expression of CD206 and IL-10 by about 28 and 22 fold, respectively, in respect to control. This was corroborated in a stimulated pro-inflammatory situation, with the higher expression (60 fold) of iNOS being almost completely reversed by the addition of FE. FE was also capable of reverse LPS-caused inflammation in an in vivo mouse model, including by reducing macrophage activation by LPS from 41% of positive CD11C to 9% upon fucoidan injection. Taken together, the potential of FE as an anti-inflammatory agent was validated, both in vitro and in vivo.


Assuntos
Fucus , Camundongos , Animais , Lipopolissacarídeos , Polissacarídeos/farmacologia , Citocinas
6.
ACS Biomater Sci Eng ; 9(5): 2514-2523, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074315

RESUMO

The thymus is responsible for the selection and development of T cells, having an essential role in the establishment of adaptive immunity. Thymic epithelial cells (TECs) are key players in T cell development interacting with thymocytes in the thymic 3D environment. Feeder-layer cells have been frequently used as platforms for the successful establishment of TEC cultures. Nevertheless, the role of the feeder cell-derived extracellular matrix (ECM) on TEC cultures was not previously reported. Therefore, this work aimed at assessing the effect of the ECM produced by feeder cells cultured at two different densities on the establishment of TEC culture. Due to the high surface area and porosity, electrospun fibrous meshes were used to support ECM deposition. The feeder cell-derived ECM was efficiently recovered after decellularization, maintaining the composition of major proteins. All the decellularized matrices were permeable and showed an increase in surface mechanical properties after decellularization. TEC cultures confirmed that the ECM density impacts cellular performance, with higher densities showing a decreased cellular activity. Our findings provide evidence that feeder cell-derived ECM is a suitable substrate for TEC culture and can potentially be applied in thymus bioengineering.


Assuntos
Células Epiteliais , Matriz Extracelular , Células Alimentadoras , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Linfócitos T/metabolismo , Timo/metabolismo
7.
Biomater Adv ; 147: 213320, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739783

RESUMO

The thymus coordinates the development and selection of T cells. It is structured into two main compartments: the cortex and the medulla. The replication of such complex 3D environment has been challenged by bioengineering approaches. Nevertheless, the effect of the scaffold microstructure on thymic epithelial cell (TEC) cultures has not been deeply investigated. Here, we developed bilayered porous silk fibroin scaffolds and tested their effect on TEC co-cultures. The small and large pore scaffolds presented a mean pore size of 84.33 ± 21.51 µm and 194.90 ± 61.38 µm, respectively. The highly porous bilayered scaffolds presented a high water absorption and water content (> 94 %), together with mechanical properties in the range of the native tissue. TEC (i.e., medullary (mTEC) and cortical (cTEC) cell lines) proliferation is increased in scaffolds with larger pores. The co-culture of both TEC lines in the bilayered porous silk scaffolds presents enhanced cell proliferation and metabolic activity when compared with mTEC in single culture. Also, when the co-culture occurred with cTEC in the small pores layer and mTEC in the large pores layer, a 9.2- and 18.9-fold increase in Foxn1 and Icam1 gene expression in cTEC is evident. These results suggest that scaffold microstructure and the co-culture influence TEC's behaviour. Bilayered silk scaffolds with adjusted microstructure are a valid alternative for TEC culture, having possible applications in advanced thymus bioengineering strategies.


Assuntos
Seda , Timo , Seda/metabolismo , Porosidade , Timo/metabolismo , Engenharia Tecidual/métodos , Bioengenharia
8.
Int J Colorectal Dis ; 38(1): 52, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814011

RESUMO

PURPOSE: Postoperative complications after a colonic and rectal surgery are of significant concern to the surgical community. Although there are different techniques to perform anastomosis (i.e., handsewn, stapled, or compression), there is still no consensus on which technique provides the least number of postoperative problems. The objective of this study is to compare the different anastomotic techniques regarding the occurrence or duration of postoperative outcomes such as anastomotic dehiscence, mortality, reoperation, bleeding and stricture (as primary outcomes), and wound infection, intra-abdominal abscess, duration of surgery, and hospital stay (as secondary outcomes). METHODS: Clinical trials published between January 1, 2010, and December 31, 2021, reporting anastomotic complications with any of the anastomotic technique were identified using the MEDLINE database. Only articles that clearly defined the anastomotic technique used, and report at least two of the outcomes defined were included. RESULTS: This meta-analysis included 16 studies whose differences were related to the need of reoperation (p < 0.01) and the duration of surgery (p = 0.02), while for the anastomotic dehiscence, mortality, bleeding, stricture, wound infection, intra-abdominal abscess, and hospital stay, no significant differences were found. Compression anastomosis reported the lowest reoperation rate (3.64%) and the handsewn anastomosis the highest (9.49%). Despite this, more time to perform the surgery was required in compression anastomosis (183.47 min), with the handsewn being the fastest technique (139.92 min). CONCLUSIONS: The evidence found was not sufficient to demonstrate which technique is most suitable to perform colonic and rectal anastomosis, since the postoperative complications were similar between the handsewn, stapled, or compression techniques.


Assuntos
Abscesso Abdominal , Infecções Intra-Abdominais , Humanos , Grampeamento Cirúrgico , Técnicas de Sutura , Constrição Patológica , Abscesso , Anastomose Cirúrgica/métodos , Complicações Pós-Operatórias
9.
Mar Drugs ; 20(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355012

RESUMO

Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.


Assuntos
Produtos Biológicos , Neoplasias Pancreáticas , Humanos , Materiais Biocompatíveis/uso terapêutico , Fungos/química , Organismos Aquáticos/química , Bactérias/química , Neoplasias Pancreáticas/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química
10.
Int J Biol Macromol ; 222(Pt B): 3168-3177, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243167

RESUMO

The tri-dimensionality of the thymic extracellular matrix (ECM) supports the crosstalk between thymocytes and thymic epithelial cells (TECs). The thymic ECM component laminin-2 is involved in the regulation of thymocytes and their interaction with cortical TECs (cTECs). Most in vitro studies use planar surfaces to study the interaction between ECM components and thymic cells. Herein, we developed a novel biofunctionalized culture system by immobilizing laminin-2 at the surface of porous and fibrous electrospun meshes. We aimed to study the interaction of cTECs with thymocytes in the presence of laminin-2 presented through this system. The results indicated that the presence of laminin-2, not its density, has a positive effect on the cell viability and proliferation of cTECs. qPCR results demonstrated that laminin-2 density influenced the expression of cTECs genes. An increased percentage of adherent CD4-CD8- thymocytes and a decreased percentage of CD4+CD8+ thymocytes were evident in higher laminin-2 concentrations. Higher concentrations decreased the expression of Il7 and Ccl25 in cTECs after thymocyte adhesion. Altogether, these results indicate that the interaction of thymocytes with the thymic cortical compartment is affected by laminin-2 density and supports the need for immobilized ECM proteins in porous and fibrous substrates for the study of thymus biology.


Assuntos
Laminina , Timócitos , Timo , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Diferenciação Celular
11.
Mar Drugs ; 20(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36286447

RESUMO

The successful integration of transplanted three-dimensional tissue engineering (TE) constructs depends greatly on their rapid vascularization. Therefore, it is essential to address this vascularization issue in the initial design of constructs for perfused tissues. Two of the most important variables in this regard are scaffold composition and cell sourcing. Collagens with marine origins overcome some issues associated with mammal-derived collagen while maintaining their advantages in terms of biocompatibility. Concurrently, the freshly isolated stromal vascular fraction (SVF) of adipose tissue has been proposed as an advantageous cell fraction for vascularization purposes due to its highly angiogenic properties, allowing extrinsic angiogenic growth factor-free vascularization strategies for TE applications. In this study, we aimed at understanding whether marine collagen 3D matrices could support cryopreserved human SVF in maintaining intrinsic angiogenic properties observed for fresh SVF. For this, cryopreserved human SVF was seeded on blue shark collagen sponges and cultured up to 7 days in a basal medium. The secretome profile of several angiogenesis-related factors was studied throughout culture times and correlated with the expression pattern of CD31 and CD146, which showed the formation of a prevascular network. Upon in ovo implantation, increased vessel recruitment was observed in prevascularized sponges when compared with sponges without SVF cells. Immunohistochemistry for CD31 demonstrated the improved integration of prevascularized sponges within chick chorioalantoic membrane (CAM) tissues, while in situ hybridization showed human cells lining blood vessels. These results demonstrate the potential of using cryopreserved SVF combined with marine collagen as a streamlined approach to improve the vascularization of TE constructs.


Assuntos
Tecido Adiposo , Fração Vascular Estromal , Animais , Humanos , Antígeno CD146/metabolismo , Células Cultivadas , Tecido Adiposo/metabolismo , Neovascularização Patológica/metabolismo , Colágeno/farmacologia , Colágeno/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mamíferos
12.
ACS Biomater Sci Eng ; 8(7): 2943-2953, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35706335

RESUMO

The promotion of angiogenesis is a fundamental step for efficient organ/tissue reconstitution and replacement. Thus, several strategies to promote vascularization of scaffolds were studied to satisfy this unsolved clinical need. The interface between cells and substrates is a determinant for the success of tissue engineering (TE) strategies. Substrate's topography is reported to play a key role in influencing endothelial cell behavior, namely, on its proliferation, metabolic activity, morphology, migration, and secretion of cytokines and chemokines. Therefore, surface topography of the biomaterial-based grafts is a crucial property that is considered in the development of a new TE approach. Herein, we hypothesize that the surface of Rubus fruticosus leaf plays a crucial role in driving angiogenesis since its architecture resembles the vascular structures at a biologically relevant size scale. For this, we produced biomimetic polycaprolactone (PCL) membranes (BpMs) replicating the surface topography of a R. fruticosus leaf by replica molding and nanoimprint lithography. Our results showed an enhanced performance in terms of proliferation of the human endothelial cell line on top of the BpM. Moreover, an asymmetric cellular spatial distribution among the surface of the BpM was observed. These cells seem to have higher density for longer time periods in the region that replicates the leaf veins. Finally, we assess the angiogenic capacity through a chick chorioallantoic membrane assay, revealing that BpMs are more prone to support angiogenesis than flat PCL membranes. We strongly believe that this strategy can bring new insights into developing TE strategies with an enhanced performance in terms of the vascular integration between the host and the scaffolds implanted.


Assuntos
Rubus , Engenharia Tecidual , Biomimética , Humanos , Folhas de Planta , Engenharia Tecidual/métodos , Alicerces Teciduais/química
13.
Biomater Adv ; 134: 112585, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35525755

RESUMO

Inflammatory arthritic diseases are characterized by a persistent inflammation of the synovial tissues where tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) pro-inflammatory cytokines are over-expressed, leading to progressive musculoskeletal disability. Methotrexate (MTX), a disease-modifying-anti-rheumatic drug (DMARD) commonly applied in their treatment, can be used in combination with biological-DMARDs as anti-TNFα antibody to improve the treatments efficacy. However, their systemic administration comes with severe side-effects and limited therapeutic efficacy due to their off-target distribution and short half-life. To overcome such limitations, encapsulation of clinically relevant concentrations of MTX and anti-TNFα antibody into polycaprolactone (PCL) or poly(vinyl-alcohol) (PVA) microfluidic-assisted or coaxial electrospun fibrous meshes is proposed as local controlled dual drug release systems. Release studies show that microfluidic-assisted electrospinning meshes encapsulating both drugs achieved higher concentrations than coaxials. Biological assays using human articular chondrocytes (hACs) and monocytic cells (THP-1 cell line) demonstrate that fibrous meshes encapsulating the drugs are non-toxic. The systems' efficacy is proved by a significant decrease of TNFα and IL-6 concentrations in conditioned medium of lipopolysaccharide (LPS)-stimulated THP-1 cells, especially in the presence of microfluidic-assisted electrospun meshes, when compared with THP-1 conditioned medium (59.5% and 83.9% less, respectively). Therefore, microfluidic-assisted electrospinning fibrous meshes with encapsulating drugs represent an alternative to coaxial, as a local therapy for inflammatory arthritis diseases.


Assuntos
Antirreumáticos , Interleucina-6 , Antirreumáticos/uso terapêutico , Meios de Cultivo Condicionados , Liberação Controlada de Fármacos , Humanos , Metotrexato/farmacologia , Microfluídica , Preparações Farmacêuticas , Fator de Necrose Tumoral alfa
14.
Biomacromolecules ; 23(6): 2415-2427, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35623028

RESUMO

Metronidazole (MTZ) is a drug potentially used for the treatment of intestinal infections, namely, the ones caused by colorectal surgery. The traditional routes of administration decrease its local effectiveness and present off-site effects. To circumvent such limitations, herein a drug delivery system (DDS) based on MTZ-loaded nanoparticles (NPs) immobilized at the surface of electrospun fibrous meshes is proposed. MTZ at different concentrations (1, 2, 5, and 10 mg mL-1) was loaded into chitosan-sodium tripolyphosphate NPs. The MTZ loaded into NPs at the highest concentration showed a quick release in the first 12 h, followed by a gradual release. This DDS was not toxic to human colonic cells. When tested against different bacterial strains, a significant reduction of Escherichia coli and Staphylococcus aureus was observed, but no effect was found against Enterococcus faecalis. Therefore, this DDS offers high potential to locally prevent the occurrence of infections after colorectal anastomosis.


Assuntos
Quitosana , Neoplasias Colorretais , Nanopartículas , Antibacterianos/farmacologia , Bactérias , Quitosana/farmacologia , Sistemas de Liberação de Medicamentos , Escherichia coli , Humanos , Metronidazol/farmacologia , Virulência
15.
NPJ Regen Med ; 6(1): 79, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799583

RESUMO

Extracellular vesicles (EVs) are being increasingly studied owing to its regenerative potential, namely EVs derived from human bone marrow mesenchymal stem cells (hBM-MSCs). Those can be used for controlling inflammation, repairing injury, and enhancing tissue regeneration. Differently, the potential of EVs derived from human articular chondrocytes (hACs) to promote cartilage regeneration has not been thoroughly investigated. This work aims to develop an EVs immobilization system capable of selectively bind EVs present in conditioned medium obtained from cultures of hACs or hBM-MSC. For that, an anti-CD63 antibody was immobilized at the surface of an activated and functionalized electrospun nanofibrous mesh. The chondrogenic potential of bound EVs was further assessed by culturing hBM-MSCs during 28 days under basal conditions. EVs derived from hACs cultured under differentiation medium or from chondrogenically committed hBM-MSCs induced a chondrogenic phenotype characterized by marked induction of SOX9, COMP, Aggrecan and Collagen type II, and matrix glycosaminoglycans synthesis. Indeed, both EVs immobilization systems outperformed the currently used chondroinductive strategies. These data show that naturally secreted EVs can guide the chondrogenic commitment of hBM-MSCs in the absence of any other chemical or genetic chondrogenic inductors based in medium supplementation.

17.
Adv Healthc Mater ; 10(20): e2100773, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197034

RESUMO

The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.


Assuntos
Linfócitos T , Engenharia Tecidual , Células Epiteliais , Tolerância Imunológica , Células Estromais , Timo
18.
ACS Biomater Sci Eng ; 7(7): 3423-3433, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34097827

RESUMO

The increase of both arterial occlusive diseases and coronary heart diseases leads to a higher demand for small-diameter vascular grafts (<6 mm). The gold standard for small-diameter vessel replacement is the use of autologous veins. Nevertheless, up to 30% of these patients need to use vascular grafts. Although synthetic polymers have been successfully used for the replacement of large-diameter vascular grafts (>6 mm), they are associated with thrombosis, intimal hyperplasia, calcification, and chronic inflammation when used as small-diameter vascular grafts. Therefore, natural materials have been studied for this application. In this study, a decellularized human chorion membrane (dHCM) vascular graft with a 3-4 mm diameter was created. Herein, the biocompatibility of dHCM with endothelial cells was demonstrated in vitro and ex ovo. Blood biocompatibility of dHCM was also shown by studying plasma protein adsorption, platelet adhesion and activation, and its hemolytic potential. Furthermore, dHCM antibacterial properties against Staphylococcus aureus were also studied. In summary, the dHCM reticular layer side presented all the needed characteristics to be used in the inner side of a vascular graft. Additionally, the mechanical properties of the dHCM tubular construct were studied, being similar to the ones of the saphenous vein, the gold standard for autologous small-diameter vessel replacement.


Assuntos
Bioprótese , Enxerto Vascular , Bioprótese/efeitos adversos , Prótese Vascular/efeitos adversos , Córion , Células Endoteliais , Humanos
19.
Int J Biol Macromol ; 183: 695-706, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33932419

RESUMO

Implantation of biomaterials and hybrid constructs in tissue engineering approaches presents major limitations such as inflammatory reaction and the lack of vasculature integration. Therefore, new strategies are needed to enhance implant function, immune protection, and revascularization. In this work, we developed fibrous meshes composed of fucoidan (Fu), a sulfated polysaccharide extracted from brown algae, and polycaprolactone (PCL), a synthetic biodegradable polymer, using the airbrush technique. The chemical characterization by FTIR, EDS, and XPS confirmed the presence of the two polymers in the structure of airbrushed nanofibrous meshes (ANFM). Moreover, these nanofibrous exhibited good wettability and mechanical properties envisaging their application as templates for biomaterials and cell culture. The developed ANFM were directly cultured with human pulmonary microvascular endothelial (HPMEC-ST1.6R) cells for up to 7 days. Biological results demonstrated that ANFM comprising Fu promoted cellular attachment, spreading, and proliferation of human endothelial cells. The angiogenic potential of ANFM was further evaluated by onplantation of PCL and PCL/Fu ANFM in chick chorioallantoic membrane (CAM). In ovo and ex ovo results showed that the incorporation of Fu increased the pro-angiogenic potential of ANFM. Altogether, the results suggest that airbrush biocomposite meshes could be used as a biomaterial substrate to promote vascularization.


Assuntos
Indutores da Angiogênese/farmacologia , Membrana Corioalantoide/irrigação sanguínea , Pulmão/irrigação sanguínea , Poliésteres/química , Polissacarídeos/farmacologia , Indutores da Angiogênese/química , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Microvasos/citologia , Microvasos/efeitos dos fármacos , Nanofibras , Polissacarídeos/química , Telas Cirúrgicas , Engenharia Tecidual
20.
Int J Pharm ; 600: 120548, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794324

RESUMO

The work herein presented reports the development of fucoidan/chitosan nanoparticles (NPs) loaded with gemcitabine and functionalized with ErbB-2 antibody at their surface (NPs + Gem + Ab). The maximum immobilization of ErbB-2 on NPs' surface was set at 10 µg mL-1 and resulted in NPs with a size around 160 nm, a polydispersity index of 0.18, and a zeta potential of 21 mV. ErbB-2 is overexpressed in some subtypes of breast cancers, and the targeting capability of the NPs + Gem + Ab system was confirmed by an increased cellular uptake of SKBR3 cells (ErbB-2 positive) when compared to MDA-MB-231 (ErbB-2 negative). To validate the targeting efficacy of NPs + Gem + Ab, a co-culture system with human endothelial and SKBR3 cells was established. Cytotoxic effects over endothelial cells were similar for all the tested conditions (between 25 and 30%). However, the NPs + Gem + Ab system presented increased toxicity over breast cancer cells, above 80% after 24 h, when compared to free Gem and NPs + Gem (around 15% and 20%, respectively). In vivo studies demonstrated that the developed targeting system significantly reduced tumor growth and the appearance of lung metastasis compared to untreated controls. In summary, the efficacy of the NPs + Gem + Ab system to target cancer cells was established and validated both in vitro and in vivo, being a compelling alternative strategy to current chemotherapeutic approaches.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Células Endoteliais , Feminino , Humanos , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...