Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 217: 103690, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32068185

RESUMO

Arachis stenosperma is a wild peanut relative exclusive to South America that harbors high levels of resistance against several pathogens, including the peanut root-knot nematode (RKN) Meloidogyne arenaria. In this study, a proteomic survey of A. stenosperma-M. arenaria interaction using 2-DE and LC-MS/MS identified approximately 1400 proteins, out of which 222 were differentially abundant (DAPs) when RKN inoculated root samples were compared to the control. Most of these DAPs were assigned to functional categories related to plant responses to pathogens including stress, glycolysis, redox and tricarboxylic acid cycle. The comparison between the transcriptome (RNA-Seq) and proteome expression changes, showed that almost 55% of these DAPs encode genes with a similar expression trend to their protein counterparts. Most of these genes were induced during RKN infection and some were related to plant defense, such as MLP-like protein 34 (MLP34), cinnamoyl-CoA reductase 1 (CCR1), enolase (ENO), alcohol dehydrogenase (ADH) and eukaryotic translation initiation factor 5A (eIF5A). The overexpression of AsMLP34 in Agrobacterium rhizogenes transgenic roots in a susceptible peanut cultivar showed a reduction in the number of M. arenaria galls and egg masses, indicating that AsMLP34 is a promising candidate gene to be exploited in breeding programs for RKN control in peanut. SIGNIFICANCE: The use of an integrated approach to compare plant-nematode transcriptional and translational data enabled the identification of a new gene, AsMLP34, for Meloidogyne resistance.


Assuntos
Tylenchoidea , Agrobacterium , Animais , Arachis/genética , Cromatografia Líquida , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Raízes de Plantas , Proteômica , América do Sul , Espectrometria de Massas em Tandem
2.
J Proteomics ; 192: 299-310, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30267876

RESUMO

Peanut wild relatives (Arachis spp.) have high genetic diversity and are important sources of resistance to biotic and abiotic stresses. In this study, proteins were analyzed in root tissues of A. duranensis submitted to a progressive water deficit in soil and the differential abundance was compared to transcript expression profiles obtained by RNA-seq and qRT-PCR. Using a 2-DE approach, a total of 31 proteins were identified, most of which were associated with stress response and drought perception. These comprised a chitinase-2 (unique to stressed condition), an MLP-like protein, a glycine-rich protein DOT1-like, a maturase K and heat shock-related proteins (HSP70 - an isoform unique to the control, and HSP17.3). Other proteins unique to the control condition comprised a transcription initiation factor IIF subunit alpha-like protein, a SRPBCC ligand-binding domain superfamily protein, an Adenine phosphoribosyl transferase, a Leo1-like protein, a Cobalamine-independent methionine synthase and a Transmembrane emp24 domain-containing protein p24delta9-like. Correlation of mRNA expression and corresponding protein abundance was observed for 15 of the identified proteins, with genes encoding the majority of proteins (14) negatively regulated in stressed roots. Proteins identified in this study offer potential for the genetic improvement of cultivated peanut for drought tolerance. SIGNIFICANCE: The comparison of protein abundance and corresponding transcript expression levels (RNA-seq and qRT-PCR) revealed that 15 of the identified proteins showed similar expression behavior, with the majority (14 proteins) negatively regulated in stressed roots. Chitinase-2 (Cht2) was the only protein with an upregulation behavior in all approaches. These proteins appear to play an important role in drought tolerance in A. duranensis and may be further explored in peanut genetic breeding programs.


Assuntos
Arachis/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/biossíntese , Raízes de Plantas/metabolismo , Arachis/genética , Desidratação/genética , Desidratação/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Raízes de Plantas/genética , Proteômica
3.
PLoS One ; 10(10): e0140937, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488731

RESUMO

Wild peanut relatives (Arachis spp.) are genetically diverse and were adapted to a range of environments during the evolution course, constituting an important source of allele diversity for resistance to biotic and abiotic stresses. The wild diploid A. stenosperma harbors high levels of resistance to a variety of pathogens, including the root-knot nematode (RKN) Meloidogyne arenaria, through the onset of the Hypersensitive Response (HR). In order to identify genes and regulators triggering this defense response, a comprehensive root transcriptome analysis during the first stages of this incompatible interaction was conducted using Illumina Hi-Seq. Overall, eight cDNA libraries were produced generating 28.2 GB, which were de novo assembled into 44,132 contigs and 37,882 loci. Differentially expressed genes (DEGs) were identified and clustered according to their expression profile, with the majority being downregulated at 6 DAI, which coincides with the onset of the HR. Amongst these DEGs, 27 were selected for further qRT-PCR validation allowing the identification of nematode-responsive candidate genes that are putatively related to the resistance response. Those candidates are engaged in the salycilic (NBS-LRR, lipocalins, resveratrol synthase) and jasmonic (patatin, allene oxidase cyclase) acids pathways, and also related to hormonal balance (auxin responsive protein, GH3) and cellular plasticity and signaling (tetraspanin, integrin, expansin), with some of them showing contrasting expression behavior between Arachis RKN-resistant and susceptible genotypes. As these candidate genes activate different defensive signaling systems, the genetic (HR) and the induced resistance (IR), their pyramidding in one genotype via molecular breeding or transgenic strategy might contribute to a more durable resistance, thus improving the long-term control of RKN in peanut.


Assuntos
Arachis/genética , Resistência à Doença/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Tylenchoidea/imunologia , Animais , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Lipocalinas/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/genética , Resveratrol , Estilbenos/metabolismo
4.
Plant Mol Biol Report ; 33: 1876-1892, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26752807

RESUMO

Peanut (Arachis hypogaea L.) is an important legume cultivated mostly in drought-prone areas where its productivity can be limited by water scarcity. The development of more drought-tolerant varieties is, therefore, a priority for peanut breeding programs worldwide. In contrast to cultivated peanut, wild relatives have a broader genetic diversity and constitute a rich source of resistance/tolerance alleles to biotic and abiotic stresses. The present study takes advantage of this diversity to identify drought-responsive genes by analyzing the expression profile of two wild species, Arachis duranensis and Arachis magna (AA and BB genomes, respectively), in response to progressive water deficit in soil. Data analysis from leaves and roots of A. duranensis (454 sequencing) and A. magna (suppression subtractive hybridization (SSH)) stressed and control complementary DNA (cDNA) libraries revealed several differentially expressed genes in silico, and 44 of them were selected for further validation by quantitative RT-PCR (qRT-PCR). This allowed the identification of drought-responsive candidate genes, such as Expansin, Nitrilase, NAC, and bZIP transcription factors, displaying significant levels of differential expression during stress imposition in both species. This is the first report on identification of differentially expressed genes under drought stress and recovery in wild Arachis species. The generated transcriptome data, besides being a valuable resource for gene discovery, will allow the characterization of new alleles and development of molecular markers associated with drought responses in peanut. These together constitute important tools for the peanut breeding program and also contribute to a better comprehension of gene modulation in response to water deficit and rehydration.

5.
BMC Genomics ; 13: 387, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22888963

RESUMO

BACKGROUND: Cultivated peanut (Arachis hypogaea) is one of the most widely grown grain legumes in the world, being valued for its high protein and unsaturated oil contents. Worldwide, the major constraints to peanut production are drought and fungal diseases. Wild Arachis species, which are exclusively South American in origin, have high genetic diversity and have been selected during evolution in a range of environments and biotic stresses, constituting a rich source of allele diversity. Arachis stenosperma harbors resistances to a number of pests, including fungal diseases, whilst A. duranensis has shown improved tolerance to water limited stress. In this study, these species were used for the creation of an extensive databank of wild Arachis transcripts under stress which will constitute a rich source for gene discovery and molecular markers development. RESULTS: Transcriptome analysis of cDNA collections from A. stenosperma challenged with Cercosporidium personatum (Berk. and M.A. Curtis) Deighton, and A. duranensis submitted to gradual water limited stress was conducted using 454 GS FLX Titanium generating a total of 7.4 x 10(5) raw sequence reads covering 211 Mbp of both genomes. High quality reads were assembled to 7,723 contigs for A. stenosperma and 12,792 for A. duranensis and functional annotation indicated that 95% of the contigs in both species could be appointed to GO annotation categories. A number of transcription factors families and defense related genes were identified in both species. Additionally, the expression of five A. stenosperma Resistance Gene Analogs (RGAs) and four retrotransposon (FIDEL-related) sequences were analyzed by qRT-PCR. This data set was used to design a total of 2,325 EST-SSRs, of which a subset of 584 amplified in both species and 214 were shown to be polymorphic using ePCR. CONCLUSIONS: This study comprises one of the largest unigene dataset for wild Arachis species and will help to elucidate genes involved in responses to biological processes such as fungal diseases and water limited stress. Moreover, it will also facilitate basic and applied research on the genetics of peanut through the development of new molecular markers and the study of adaptive variation across the genus.


Assuntos
Arachis/genética , Fabaceae/genética , Estresse Fisiológico , Transcriptoma , Ascomicetos/patogenicidade , Secas , Etiquetas de Sequências Expressas , Fabaceae/microbiologia , Genes de Plantas , Repetições de Microssatélites , Anotação de Sequência Molecular , Doenças das Plantas/genética , RNA de Plantas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...