Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(6): e2300634, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402434

RESUMO

The discovery of metabolically active brown adipose tissue (BAT) in human adults and the worldwide increase in obesity and obesity-related chronic noncommunicable diseases (NCDs) has made BAT a therapeutic target in the last two decades. The potential of BAT to oxidize fatty acids rapidly and increase energy expenditure inversely correlates with adiposity, insulin and glucose resistance, and cardiovascular and metabolic diseases. Currently, BAT is recognized by a new molecular signature; several BAT-derived molecules that act positively on target tissues have been identified and collectively called batokines. Bioactive compounds present in foods are endowed with thermogenic properties that increase BAT activation signaling. Understanding the mechanisms that lead to BAT activation and the batokines secreted by it within the thermogenic state is fundamental for its recruitment and management of obesity and NCDs. This review contributes to recent updates on the morphophysiology of BAT, its endocrine role in obesity, and the main bioactive compounds present in foods involved in classical and nonclassical thermogenic pathways activation.


Assuntos
Tecido Adiposo Marrom , Obesidade , Humanos , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Metabolismo Energético , Glucose/metabolismo , Transdução de Sinais , Termogênese , Adipócitos Marrons/metabolismo
2.
J Nutr Biochem ; 117: 109336, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990367

RESUMO

This study aimed to evaluate the preventive and therapeutic effects of coffee consumption on molecular changes and adipose tissue remodeling in a murine model of high-fat diet-induced obesity. Three-month-old C57BL/6 mice were initially divided into three groups, namely, control (C), high-fat (HF), and coffee prevention (HF-CP) groups, and the HF group was subdivided at the end of the 10th week into two subgroups, an HF group and a coffee treatment (HF-CT) group; thus, a total of four groups were investigated at the 14th week of the experiment. The HF-CP group had lower body mass than the HF group (-7%, P < .05) and a better distribution of adipose tissue. Both groups that received coffee (HF-CP and HF-CT) showed improved glucose metabolism compared with the HF group. Coffee consumption also attenuated adipose tissue inflammation and showed decreased macrophage infiltration and lower IL-6 levels compared with the HF group (HF-CP: -337% %, P < .05; HF-CT: -275%, P < .05). Hepatic steatosis and inflammation were attenuated in the HF-CP and HF-CT groups. The HF-CP group showed more pronounced expression of genes involved in adaptive thermogenesis and mitochondrial biogenesis (PPARγ, Prdm16, Pcg1α, ß3-adrenergic receptor, Ucp-1, and Opa-1) than the other experimental groups. Preventive coffee consumption associated with a high-fat diet ameliorates the metabolic profile related to the development of obesity and its comorbidities.


Assuntos
Tecido Adiposo Marrom , Dieta Hiperlipídica , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Café , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo
3.
Mol Cell Endocrinol ; 562: 111839, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581062

RESUMO

AIM: To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS: Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS: The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION: PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.


Assuntos
Endotoxemia , PPAR alfa , Animais , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica , Lipídeos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo
4.
Appl Physiol Nutr Metab ; 46(12): 1469-1475, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34192478

RESUMO

This study evaluated the effect of green banana flour (GBF) consumption on obesity-related conditions in mice fed high-fat diets. GBF was prepared using stage 1 green banana pulp, which was dehydrated and milled. Mice were fed a control diet (n = 20; 10% of energy from lipids) or a high-fat diet (n = 20; 50% of energy from lipids). After 10 weeks, mice were divided into 4 groups based on feed: standard chow (SC; n = 10), standard with 15% GBF (SB; n = 10), high-fat diet (HF; n = 10) and high-fat diet with 15% GBF (HFB; n = 10) for 4 weeks. HFB exhibited lower gains in body weight (-21%; p < 0.01) and in all fat pads (p < 0.01) compared with the HF group. SC, SB, and HFB showed smaller retroperitoneal white adipose tissue diameters (p < 0.001). SB and HFB-treated mice showed lower levels of leptin, IL-6, and TNF-α compared with the SC and HF groups (p < 0.01). In the GBF-fed groups, there was a reduction in the abundance of Firmicutes (SB: -22%; HFB: -23%) and an increase in Bacteroidetes (SB: +25%; HFB: +29%) compared with their counterparts. We demonstrated that GBF consumption attenuated inflammation and improved metabolic status, adipose tissue remodeling, and the gut microbiota profile of obese mice. Novelty: Green banana flour (GBF) consumption, rich in resistant starch, regulates body weight in mice fed high-fat diets. GBF consumption improves fat pad distribution in mice fed high-fat diets. GBF improves obesity-associated systemic inflammation and regulates gut microbiota profile in mice fed high-fat diets.


Assuntos
Alimentos Fortificados , Microbioma Gastrointestinal , Inflamação/fisiopatologia , Musa , Obesidade/microbiologia , Obesidade/fisiopatologia , Adiposidade , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Interleucina-6/sangue , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/prevenção & controle , Fator de Necrose Tumoral alfa/sangue , Aumento de Peso
5.
Int J Biol Macromol ; 145: 1066-1072, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730978

RESUMO

This study aimed to investigate the effect of resistant starch from green banana (GB) on steatosis and short-chain fatty acid (SCFAs) production in high fat diet-induced obesity in mice. High-fat green banana group (HFB) exhibited lower gains in BM (body mass; -6%; P < 0.01) compared with High-fat diet group (HF). Additionally, HFB mice showed reduction in liver steatosis (-28%, P < 0.01) with reduction of 93% in hepatic triacylglycerol (P < 0.01) compared to HF-diet-fed mice. In addition, the protein abundance of AMPKp/AMPK, HMGCoA-r and FAS were downregulated in livers of HFB mice (P < 0.01), relatively to the HF-diet-fed mice. ABCG8 and ABCG5 were up-regulated in HFB group compared to HF group (P < 0.01). Furthermore, the HFB fed-mice produced the highest amount of SCFAs (p < 0.05) compared to its counterpart HFD. In conclusion, we demonstrated that resistant starch from GB improved metabolic parameters by modulating the expression of key proteins involved in liver lipid metabolism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/uso terapêutico , Ácidos Graxos Voláteis/metabolismo , Musa/química , Hepatopatia Gordurosa não Alcoólica/metabolismo , Amido/administração & dosagem , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Ingestão de Alimentos , Jejum , Glucose/metabolismo , Teste de Tolerância a Glucose , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...