Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 107: 104419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508506

RESUMO

Certain individuals have a disproportionate effect on group responses. Characteristics may include susceptibility to pollutants, such as cadmium (Cd), a potent trace metal. Here, we show how a pair of Cd-exposed individuals can impact the behavior of unexposed groups. We used behavioral assessments to characterize the extent of the effects of the Cd-exposed individuals on group boldness, cohesion, foraging, activity, and responses to plants. We found that groups with a pair of Cd-exposed fish remained closer to novel stimuli and plants than did groups with untreated (control) fish. The presence of plants reduced Cd-induced differences in shoal cohesion and delays feeding in male shoals. Shoals with Cd- and water-treated fish were equally active. The results suggest that fish acutely exposed to environmentally relevant Cd concentrations can have profound effects on the un-exposed majority. However, the presence of plants may mitigate the effects of contaminants on some aspects of social behavior.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , Cádmio/toxicidade , Comportamento Social , Poluentes Químicos da Água/toxicidade
2.
Aquat Toxicol ; 268: 106862, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359500

RESUMO

Weak, but environmentally relevant concentrations of contaminants can have subtle, yet important, impacts on organisms, which are often overlooked due to the lack of acute impacts and the timing of exposure. Thus, recognizing simple, non-invasive markers of contamination events is essential for early detection and addressing the effects of exposure to weak environmental contaminants. Here, we tested whether exposure to an environmentally relevant concentration of Bisphenol-A (BPA), a common and persistent contaminant in aquatic systems, affects the lateralization of adult zebrafish (Danio rerio), a widely used model organism in ecotoxicology. We found that 73.5% of adult zebrafish displayed a left-side bias when they approached a visual cue, but that those exposed to weak BPA (0.02 mg/L) for 7 days did not exhibit laterality. Only 47.1% displayed a left-side bias. We found no differences in activity level and visual sensitivity, motor and sensory mechanisms, that regulate lateralized responses and that were unaffected by weak BPA exposure. These findings indicate the reliability of laterality as a simple measure of contaminant exposure and for future studies of the detailed mechanisms underlying subtle and complex behavioral effects to pollutants.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Reprodutibilidade dos Testes , Poluentes Químicos da Água/toxicidade , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade
3.
J Evol Biol ; 37(1): 89-99, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285659

RESUMO

Many organisms communicate using signals in different sensory modalities (multicomponent or multimodal). When one signal or component is lost over evolutionary time, it may be indicative of changes in other characteristics of the signalling system, including the sensory organs used to perceive and process signals. Sceloporus lizards predominantly use chemical and visual signals to communicate, yet some species have lost the ancestral ventral colour patch used in male-male agonistic interactions and exhibit increased chemosensory behaviour. Here, we asked whether evolutionary loss of this sexual signal is associated with larger vomeronasal organ (VNO) volumes (an organ that detects chemical scents) compared with species that have retained the colour patch. We measured VNO coronal section areas of 7-8 adult males from each of 11 Sceloporus species (4 that lost and 7 that retained the colour patch), estimated sensory and total epithelium volume, and compared volumes using phylogenetic analysis of covariance, controlling for body size. Contrary to expectations, we found that species retaining the ventral patch had similar relative VNO volumes as did species that had lost the ancestral patch, and that body size explains VNO epithelium volume. Visual signal loss may be sufficiently compensated for by increased chemosensory behaviour, and the allometric pattern may indicate sensory system trade-offs for large-bodied species.


Assuntos
Lagartos , Órgão Vomeronasal , Animais , Masculino , Filogenia , Feromônios , Tamanho Corporal
4.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014116

RESUMO

Some individuals have a disproportionate effect on group responses. These individuals may possess distinct attributes that differentiate them from others. These characteristics may include susceptibility to contaminant exposure such as cadmium, a potent trace metal present in water and food. Here, we tested whether a pair of cadmium-exposed individuals could exert an impact on the behavior of the unexposed majority. We used behavioral assessments to characterize the extent of the effects of the cadmium-exposed pair on group boldness, cohesion, activity and responses to landmarks. We found that groups with a pair of cadmium-exposed fish approached and remained closer to novel stimuli and landmarks than did groups with pairs of fish treated with uncontaminated water (control). Shoals with cadmium and water treated fish exhibited similar levels of cohesion and activity. The results suggest that fish acutely exposed to environmentally-relevant cadmium concentrations can have profound effects on the un-exposed majority.

5.
Sci Rep ; 13(1): 16398, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773260

RESUMO

Phenotypes that allow animals to detect, weather, and predict changes efficiently are essential for survival in fluctuating environments. Some phenotypes may remain specialized to suit an environment perfectly, while others become more plastic or generalized, shifting flexibly to match current context or adopting a form that can utilize a wide range of contexts. Here, we tested the differences in behavior, morphology, sensory and metabolic physiology between wild zebrafish (Danio rerio) in highly variable fast-flowing rivers and still-water sites. We found that river zebrafish moved at higher velocities than did still-water fish, had lower oxygen demands, and responded less vigorously to small changes in flow rate, as we might expect for fish that are well-suited to high-flow environments. River zebrafish also had less streamlined bodies and were more behaviorally plastic than were still-water zebrafish, both features that may make them better-suited to a transitional lifestyle. Our results suggest that zebrafish use distinct sensory mechanisms and metabolic physiology to reduce energetic costs of living in fast-flowing water while relying on morphology and behavior to create flexible solutions to a challenging habitat. Insights on animals' reliance on traits with different outcomes provide a framework to better understand their survival in future environmental fluctuations.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Rios , Ecossistema , Comportamento Animal , Agricultura , Poluentes Químicos da Água/análise
6.
Environ Toxicol Pharmacol ; 100: 104119, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028532

RESUMO

To account for global contamination events, we must identify direct and indirect pollutant effects. Although pollutants can have direct effects on individuals, it is unknown how a few contaminated individuals affect groups, a widespread social organization. We show environmentally relevant levels of cadmium (Cd) can have indirect social effects revealed in the social context of a larger group. Cd-contaminated individuals had poor vision and more aggressive responses, but no other behavioral effects. The presence of experienced Cd-exposed pairs in the groups had an indirect effect on the un-exposed individual's social interactions leading to the shoal becoming bolder and moving closer to a novel object than control groups. Because a few directly affected individuals could indirectly affect social behavior of the un-exposed majority, we believe that such acute but potentially important heavy metal toxicity could inform reliable predictions about the consequences of their use in a changing world.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Peixe-Zebra/fisiologia , Poluentes Químicos da Água/toxicidade , Comportamento Social
7.
J Zool (1987) ; 316(4): 271-281, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35814943

RESUMO

Social context may influence the perception of sensory cues and the ability to display refined behavioral responses. Previous work suggests that effective responses to environmental cues can be contingent on having a sufficient number of individuals in a group. Thus, the changes in group size may have profound impacts, particularly on the behavior of small social groups. Using zebrafish (Danio rerio), here we examined how changes in group size influence the ability to respond to changes in water flow. We found that fish in relatively larger groups displayed stronger rheotaxis even when comparing pairs of fish with groups of four fish, indicating that a small increase in group size can enhance the responsiveness to environmental change. Individual fish in relatively larger groups also spent less time in the energetically costly leading position compared to individuals in pairs, indicating that even a small increase in group size may provide energetic benefits. We also found that the shoal cohesion was dependent on the size of the group but within a given group size, shoal cohesion did not vary with flow rate. Our study highlights that even a small change in group size could significantly affect the way social fish respond to the changes in water flow, which could be an important attribute that shapes the resilience of social animals in changing environments.

8.
Zoology (Jena) ; 149: 125961, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592493

RESUMO

Colorful ornaments are important visual signals for animal communication that can provide critical information about the quality of the signaler. In this study, we focused on different color characteristics of the abdominal patches of males of six lizard species from the genus Sceloporus. We addressed three main objectives. First, we examined if size, brightness, saturation, and conspicuousness of these ornaments are indicative of body size, condition, immune function, or levels of testosterone and corticosterone. Second, we evaluated if the distinct components of these abdominal patches (blue or green patches and black stripes) transmit similar information about the signaler, which would support the redundant signal hypothesis, or if these components are related to different phenotypic traits, which would support the multiple message hypothesis. Third, we compared the phenotypic correlates of these ornaments among our six species to understand the degree of conservatism in the signaling patterns or to find species-specific signals. Using data collected from males in natural conditions and a multi-model inference framework, we found that in most species the area of the patches and the brightness of the blue component are positively related to body size. Thus, these color characteristics are presumably indicative of the physical strength and competitive ability of males and these shared signals were likely inherited from a common ancestor. In half of the species, males in good body condition also exhibit relatively larger blue and black areas, suggesting that the expression of these ornaments is condition-dependent. Abdominal patches also provide information about immunocompetence of the males as indicated by different correlations between certain color characteristics and ectoparasite load, counts of heterophils, and the heterophil:lymphocyte ratio. Our findings reveal that area and brightness of the abdominal patches signal the size and body condition of males, whereas blue saturation and conspicuousness with respect to the surrounding substrate are indicative of immune condition, thus supporting the multiple message hypothesis. However, some of these correlations were not shared by all species and, hence, point to intriguing species-specific signals.


Assuntos
Lagartos , Animais , Cor , Corticosterona , Masculino , Especificidade da Espécie , Testosterona
9.
Toxics ; 9(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34357908

RESUMO

Environmental change poses a devastating risk to human and environmental health. Rapid assessment of water conditions is necessary for monitoring, evaluating, and addressing this global health danger. Sentinels or biological monitors can be deployed in the field using minimal resources to detect water quality changes in real time, quickly and cheaply. Zebrafish (Danio rerio) are ideal sentinels for detecting environmental changes due to their biomedical tool kit, widespread geographic distribution, and well-characterized phenotypic responses to environmental disturbances. Here, we demonstrate the utility of zebrafish sentinels by characterizing phenotypic differences in wild zebrafish between two field sites in India. Site 1 was a rural environment with flowing water, low-hypoxic conditions, minimal human-made debris, and high iron and lead concentrations. Site 2 was an urban environment with still water, hypoxic conditions, plastic pollution, and high arsenic, iron, and chromium concentrations. We found that zebrafish from Site 2 were smaller, more cohesive, and less active than Site 1 fish. We also found sexually dimorphic body shapes within the Site 2, but not the Site 1, population. Advancing zebrafish sentinel research and development will enable rapid detection, evaluation, and response to emerging global health threats.

10.
Integr Comp Biol ; 61(3): 1191-1201, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34086909

RESUMO

Anthropogenic activities often lead to alterations in the natural environment via multiple routes. Simultaneous occurrence of interacting environmental perturbations may influence animals via more complex pathways than when being exposed to environmental stressors discretely. In our study, we investigated the interactive effects of poor visual environment and exposure to an environmentally realistic concentration of a common contaminant on the behavior of larval zebrafish, Danio rerio. Specifically, we tested the sensory-motor behavior of zebrafish larvae by exposing them to low-light conditions and a low concentration of bisphenol-A (BPA) for 7 days postfertilization. We found that zebrafish exposed to both BPA and low-light conditions had significantly weaker response to a moving-visual cue. However, those exposed to only one of these treatments did not have altered response to visual cues. Since the response to a moving, visual cue involves locomotion, we also examined the distance they traveled as a proxy for activity level of individuals across treatments. However, the distance traveled by individuals did not significantly differ across treatments, suggesting that the differences in response are linked to visual sensory pathways. Here, we emphasize that the adverse effects of environmental stressors, particularly of those that occur at environmentally relevant concentrations, may emerge only when they co-occur with another environmental stressor. These findings highlight the need to incorporate multiple environmental stressors to comprehensively assess impacts that human activities have on behavioral strategies of animals.


Assuntos
Comportamento Animal , Escuridão , Locomoção , Poluentes Químicos da Água , Peixe-Zebra , Animais , Compostos Benzidrílicos , Larva , Fenóis
11.
Genes Brain Behav ; 20(7): e12753, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34036739

RESUMO

Species with multimodal communication integrate information from social cues in different modalities into behavioral responses that are mediated by changes in gene expression in the brain. Differences in patterns of gene expression between signal modalities may shed light on the neuromolecular mechanisms underlying multisensory processing. Here, we use RNA-Seq to analyze brain transcriptome responses to either chemical or visual social signals in a territorial lizard with multimodal communication. Using an intruder challenge paradigm, we exposed 18 wild-caught, adult, male Sceloporus jarrovii to either male conspecific scents (femoral gland secretions placed on a small pebble), the species-specific push-up display (a programmed robotic model), or a control (an unscented pebble). We conducted differential expression analysis with both a de novo S. jarrovii transcriptome assembly and the reference genome of a closely related species, Sceloporus undulatus. Despite some inter-individual variation, we found significant differences in gene expression in the brain across signal modalities and the control in both analyses. The most notable differences occurred between chemical and visual stimulus treatments, closely followed by visual stimulus versus the control. Altered expression profiles could explain documented aggression differences in the immediate behavioral response to conspecific signals from different sensory modalities. Shared differentially expressed genes between visually- or chemically-stimulated males are involved in neural activity and neurodevelopment and several other differentially expressed genes in stimulus-challenged males are involved in conserved signal-transduction pathways associated with the social stress response, aggression and the response to territory intruders across vertebrates.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Expressão Gênica/fisiologia , Transcriptoma/fisiologia , Achillea/metabolismo , Animais , Lagartos/metabolismo , Masculino , Estimulação Luminosa/métodos
12.
Ecol Evol ; 11(6): 2796-2813, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767837

RESUMO

As shown from several long-term and time-intensive studies, closely related, sympatric species can impose strong selection on one another, leading to dramatic examples of phenotypic evolution. Here, we use occurrence data to identify clusters of sympatric Sceloporus lizard species and to test whether Sceloporus species tend to coexist with other species that differ in body size, as we would expect when there is competition between sympatric congeners. We found that Sceloporus species can be grouped into 16 unique bioregions. Bioregions that are located at higher latitudes tend to be larger and have fewer species, following Rapoport's rule and the latitudinal diversity gradient. Species richness was positively correlated with the number of biomes and elevation heterogeneity of each bioregion. Additionally, most bioregions show signs of phylogenetic underdispersion, meaning closely related species tend to occur in close geographic proximity. Finally, we found that although Sceloporus species that are similar in body size tend to cluster geographically, small-bodied Sceloporus species are more often in sympatry with larger-bodied Sceloporus species than expected by chance alone, whereas large-bodied species cluster with each other geographically and phylogenetically. These results suggest that community composition in extant Sceloporus species is the result of allopatric evolution, as closely related species move into different biomes, and interspecies interactions, with sympatry between species of different body sizes. Our phyloinformatic approach offers unique and detailed insights into how a clade composed of ecologically and morphologically disparate species are distributed over large geographic space and evolutionary time.

13.
Proc Biol Sci ; 288(1947): 20210256, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33784866

RESUMO

Behavioural responses to communicative signals combine input from multiple sensory modalities and signal compensation theory predicts that evolutionary shifts in one sensory modality could impact the response to signals in other sensory modalities. Here, we conducted two types of field experiments with 11 species spread across the lizard genus Sceloporus to test the hypothesis that the loss of visual signal elements affects behavioural responses to a chemical signal (conspecific scents) or to a predominantly visual signal (a conspecific lizard), both of which are used in intraspecific communication. We found that three species that have independently lost a visual signal trait, a colourful belly patch, responded to conspecific scents with increased chemosensory behaviour compared to a chemical control, while species with the belly patch did not. However, most species, with and without the belly patch, responded to live conspecifics with increased visual displays of similar magnitude. While aggressive responses to visual stimuli are taxonomically widespread in Sceloporus, our results suggest that increased chemosensory response behaviour is linked to colour patch loss. Thus, interactions across sensory modalities could constrain the evolution of complex signalling phenotypes, thereby influencing signal diversity.


Assuntos
Lagartos , Agressão , Animais , Cor , Fenótipo , Feromônios
14.
Behav Ecol ; 31(4): 978-991, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764859

RESUMO

Animal signals evolve by striking a balance between the need to convey information through particular habitats and the limitations of what types of signals can most easily be produced and perceived. Here, we present new results from field measures of undisturbed behavior and biochemical analyses of scent marks from 12 species of Sceloporus lizards to explore whether evolutionary changes in chemical composition are better predicted by measures of species behavior, particularly those associated with visual displays, chemoreception, and locomotion, or by measures of habitat climate (precipitation and temperature). We found that more active lizard species used fewer compounds in their volatile scent marks, perhaps conveying less specific information about individual and species identity. Scent marks from more active lizard species also had higher proportions of saturated fatty acids, and the evolution of these compounds has been tracking the phylogeny closely as we would expect for a metabolic byproduct. In contrast, the proportions of unsaturated fatty acids were better explained by evolutionary shifts in habitat temperature (and not precipitation), with species in warmer climates using almost no volatile unsaturated fatty acids. The proportion of aldehydes was explained by both behavior and environment, decreasing with behavioral activity and increasing with habitat temperature. Our results highlight the evolutionary flexibility of complex chemical signals, with different chemical compounds responding to different elements of the selective landscape over evolutionary time.

15.
Zebrafish ; 17(4): 243-252, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513074

RESUMO

Anthropogenic change is expected to alter environments at alarming rates. To predict the impact of modified environments on social behavior, we must study the relationship between environmental features and collective behavior in a genetically tractable model, zebrafish (Danio rerio). Here, we conducted a field study to examine the relationship between salient environmental features and collective behavior in four populations of zebrafish. We found zebrafish in flowing water formed volatile groups, whereas those in still water had more consistent membership and leadership. Groups in fast-flowing water were large (up to 2000 fish) and tightly knit with short nearest neighbor distances, whereas group sizes were smaller (11 fish/group) with more space between individual fish in still and slow-flowing water. These observations point to a possible profound role of water flow in influencing collective behavior in wild zebrafish.


Assuntos
Ecossistema , Comportamento Social , Natação , Peixe-Zebra/fisiologia , Animais , Animais Selvagens/fisiologia , Índia
16.
Integr Comp Biol ; 60(1): 33-42, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413115

RESUMO

Animals can shift their reliance on different sensory modalities in response to environmental conditions, and knowing the degree to which traits are reversible may help us to predict their chances of survival in a changing environment. Here, using adult zebrafish (Danio rerio), we found that 6 weeks in different light environments alone were sufficient to shift whether fish approached visual or chemical cues first, and that a subsequent reversal of lighting conditions also reversed their sensory preferences. In addition, we measured simple behavioral responses to sensory stimuli presented alone, and found that zebrafish housed in dim light for 6 weeks responded weakly to an optomotor assay, but strongly to an olfactory cue, whereas fish experiencing bright light for 6 weeks responded strongly to the visual optomotor stimulus and weakly in an olfactory assay. Visual and olfactory responses were equally reversible, and shifted to the opposite pattern when we reversed lighting conditions for 6 weeks. In contrast, we did not find a change in activity level, suggesting that changes in multiple sensory modalities can buffer animals from changes in more complex forms of behavior. This reversal of sensory response provides insight into how animals may use sensory shifts to keep up with environmental change.


Assuntos
Sinais (Psicologia) , Luz , Percepção Olfatória , Natação , Percepção Visual , Peixe-Zebra/fisiologia , Animais , Feminino , Iluminação , Masculino
17.
Sci Rep ; 10(1): 4303, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152427

RESUMO

Single substances within complex vertebrate chemical signals could be physiologically or behaviourally active. However, the vast diversity in chemical structure, physical properties and molecular size of semiochemicals makes identifying pheromonally active compounds no easy task. Here, we identified two volatile cyclic dipeptides, cyclo(L-Leu-L-Pro) and cyclo(L-Pro-L-Pro), from the complex mixture of a chemical signal in terrestrial vertebrates (lizard genus Sceloporus), synthesised one of them and investigated their biological activity in male intra-specific communication. In a series of behavioural trials, lizards performed more chemosensory behaviour (tongue flicks, lip smacks and substrate lickings) when presented with the synthesised cyclo(L-Pro-L-Pro) chemical blend, compared to the controls, the cyclo(L-Leu-L-Pro) blend, or a combined blend with both cyclic dipeptides. The results suggest a potential semiochemical role of cyclo(L-Pro-L-Pro) and a modulating effect of cyclo(L-Leu-L-Pro) that may depend on the relative concentration of both compounds in the chemical signal. In addition, our results stress how minor compounds in complex mixtures can produce a meaningful behavioural response, how small differences in structural design are crucial for biological activity, and highlight the need for more studies to determine the complete functional landscape of biologically relevant compounds.


Assuntos
Comportamento Animal/efeitos dos fármacos , Quimiotaxia , Dipeptídeos/farmacologia , Glândulas Exócrinas/metabolismo , Peptídeos Cíclicos/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Dipeptídeos/química , Glândulas Exócrinas/efeitos dos fármacos , Lagartos , Peptídeos Cíclicos/química , Compostos Orgânicos Voláteis/química
18.
Evolution ; 74(2): 311-325, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31849034

RESUMO

Phylogenetic comparative methods use tree topology, branch lengths, and models of phenotypic change to take into account nonindependence in statistical analysis. However, these methods normally assume that trees and models are known without error. Approaches relying on evolutionary regimes also assume specific distributions of character states across a tree, which often result from ancestral state reconstructions that are subject to uncertainty. Several methods have been proposed to deal with some of these sources of uncertainty, but approaches accounting for all of them are less common. Here, we show how Bayesian statistics facilitates this task while relaxing the homogeneous rate assumption of the well-known phylogenetic generalized least squares (PGLS) framework. This Bayesian formulation allows uncertainty about phylogeny, evolutionary regimes, or other statistical parameters to be taken into account for studies as simple as testing for coevolution in two traits or as complex as testing whether bursts of phenotypic change are associated with evolutionary shifts in intertrait correlations. A mixture of validation approaches indicates that the approach has good inferential properties and predictive performance. We provide suggestions for implementation and show its usefulness by exploring the coevolution of ankle posture and forefoot proportions in Carnivora.


Assuntos
Evolução Biológica , Carnívoros , Pé/fisiologia , Fenótipo , Filogenia , Postura , Animais , Tornozelo/fisiologia , Teorema de Bayes , Carnívoros/classificação , Análise dos Mínimos Quadrados , Características de História de Vida
19.
Sci Rep ; 9(1): 14531, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601932

RESUMO

Animals may exhibit preference for colors that match their environment or the resources in the environment. These preferences may impact ability to learn associations with these colors and revert the associations when the reward contingency is modified. We used zebrafish Danio rerio from four populations to test if color preferences impact associative and reversal learning ability. First, we tested if preference for blue or green impact associative ability. We subjected individual fish through eight trials to associate a social stimulus with blue or green. Next, we tested if preference for red or green impact associative reversal learning ability. We trained fish in groups of three to associate a social stimulus with red or green over three trials, and reversed the reward contingency during the following session. Results showed that zebrafish preferred green over blue and domesticated fish chose green more than blue when there was a reward attached. Zebrafish also preferred red over green. Fish from one wild population learned with both colors and reversed learning only from green to red and not vice-versa. Fish from another population showed an overwhelming preference for red irrespective of what was rewarded. Domesticated fish did not show reversal learning ability.


Assuntos
Comportamento de Escolha , Cor , Aprendizagem por Discriminação , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Recompensa
20.
Ecol Evol ; 9(8): 4733-4738, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031939

RESUMO

Many lizards are olfactory foragers and prey upon herbivorous arthropods, yet their responses to common herbivore-associated plant volatiles remain unknown. As such, their role in mediating plant indirect defenses also remains largely obscured. In this paper, we use a cotton-swab odor presentation assay to ask whether lizards respond to two arthropod-associated plant-derived volatile compounds: 2-(E)-hexenal and hexanoic acid. We studied the response of two lizard species, Sceloporus virgatusand Aspidoscelis exsanguis, because they differ substantially in their foraging behavior. We found that the actively foraging A. exsanguisresponded strongly to hexanoic acid, whereas the ambush foraging S. virgatus responded to 2-(E)-hexenal-an herbivore-associated plant volatile involved in indirect defense against herbivores. These findings indicate that S. virgatus may contribute to plant indirect defense and that a species' response to specific odorants is linked with foraging mode. Future studies can elucidate how lizards use various compounds to locate prey and how these responses impact plant-herbivore interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...