Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(10): 4149-4157, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38713459

RESUMO

A substantial portion of various organisms' proteomes comprises intrinsically disordered proteins (IDPs) that lack a defined three-dimensional structure. These IDPs exhibit a diverse array of conformations, displaying remarkable spatiotemporal heterogeneity and exceptional conformational flexibility. Characterizing the structure or structural ensemble of IDPs presents significant conceptual and methodological challenges owing to the absence of a well-defined native structure. While databases such as the Protein Ensemble Database (PED) provide IDP ensembles obtained through a combination of experimental data and molecular modeling, the absence of reaction coordinates poses challenges in comprehensively understanding pertinent aspects of the system. In this study, we leverage the energy landscape visualization method (JCTC, 6482, 2019) to scrutinize four IDP ensembles sourced from PED. ELViM, a methodology that circumvents the need for a priori reaction coordinates, aids in analyzing the ensembles. The specific IDP ensembles investigated are as follows: two fragments of nucleoporin (NUL: 884-993 and NUS: 1313-1390), yeast sic 1 N-terminal (1-90), and the N-terminal SH3 domain of Drk (1-59). Utilizing ELViM enables the comprehensive validation of ensembles, facilitating the detection of potential inconsistencies in the sampling process. Additionally, it allows for identifying and characterizing the most prevalent conformations within an ensemble. Moreover, ELViM facilitates the comparative analysis of ensembles obtained under diverse conditions, thereby providing a powerful tool for investigating the functional mechanisms of IDPs.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Modelos Moleculares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Desdobramento de Proteína
2.
J Chem Inf Model ; 64(8): 3443-3450, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38506664

RESUMO

Molecular dynamics (MD) simulations provide a powerful means of exploring the dynamic behavior of biomolecular systems at the atomic level. However, analyzing the vast data sets generated by MD simulations poses significant challenges. This article discusses the energy landscape visualization method (ELViM), a multidimensional reduction technique inspired by the energy landscape theory. ELViM transcends one-dimensional representations, offering a comprehensive analysis of the effective conformational phase space without the need for predefined reaction coordinates. We apply the ELViM to study the folding landscape of the antimicrobial peptide Polybia-MP1, showcasing its versatility in capturing complex biomolecular dynamics. Using dissimilarity matrices and a force-scheme approach, the ELViM provides intuitive visualizations, revealing structural correlations and local conformational signatures. The method is demonstrated to be adaptable, robust, and applicable to various biomolecular systems.


Assuntos
Simulação de Dinâmica Molecular , Termodinâmica , Conformação Proteica , Dobramento de Proteína , Peptídeos Antimicrobianos/química
3.
J Phys Chem B ; 128(1): 163-171, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38159056

RESUMO

Antimicrobial Peptides (AMPs) have emerged as promising alternatives to conventional antibiotics due to their capacity to disrupt the lipid packing of bacterial cell membranes. This mechanism of action may prevent the development of resistance by bacteria. Understanding their role in lipid packing disruption and their structural properties upon interaction with bacterial membranes is highly desirable. In this study, we employed Molecular Dynamics simulations and the Energy Landscape Visualization Method (ELViM) to characterize and compare the conformational ensembles of mastoparan-like Polybia-MP1 and its analogous H-MP1, in which histidines replace lysine residues. Two situations were analyzed: (i) the peptides in their free state in an aqueous solution containing water and ions and (ii) the peptides spontaneously adsorbing onto an anionic lipid bilayer, used as a bacteria membrane mimetic. ELViM was used to project a single effective conformational phase space for both peptides, providing a comparative analysis. This projection enabled us to map the conformational ensembles of each peptide in an aqueous solution and assess the structural effects of substituting lysines with histidines in H-MP1. Furthermore, a single conformational phase space analysis was employed to describe structural changes during the adsorption process using the same framework. We show that ELViM provides a comprehensive analysis, able to identify discrepancies in the conformational ensembles of these peptides that may affect their affinity to the membrane and adsorption kinetics.


Assuntos
Peptídeos Antimicrobianos , Peptídeos e Proteínas de Sinalização Intercelular , Venenos de Vespas , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...