Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 285(1): 20-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664715

RESUMO

Characterising bacterial biofilm growth in porous media is important for developing reliable numerical models of biofouling in industrial biofilters. One of the promising imaging methods to do that has been a recent successful application of X-ray microtomography. However, this technique requires a contrast agent (1-chloronaphtalene, for example) to distinguish biofilm from the liquid phase, which raises concern about biofilm disruption and impaired image interpretation. To overcome these drawbacks, we tested a new approach based on neutron tomography (NT), which does not need a contrast agent, by imaging two types of porous media (polytetrafluoroethylene - PTFE - and clay beads of various diameters) in glass or PTFE tubes in which bacterial biofilms were grown for 7 days and by comparing these images with the ones obtained with X-ray microtomography. NT images showed that the biofilm formed preferentially around the beads and at bead/bead interface. Visual comparison of both imaging techniques showed consistent biofilm spatial distributions and that the contrasting agent did not significantly disrupt the biofilm. NT images, on the other hand, were still too noisy to allow quantitative measurements. Therefore, X-ray microtomography (provided it uses non-disruptive contrast agents) seems to provide more reliable microstructural descriptors.


Assuntos
Biofilmes , Meios de Contraste , Nêutrons , Porosidade , Microtomografia por Raio-X/métodos
2.
Sci Total Environ ; 783: 146952, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33866176

RESUMO

The fate of nanoparticles (NPs) in soil under relevant environmental conditions is still poorly understood. In this study, the mobility of two metal-oxide nanoparticles (CuO and TiO2) in contrasting agricultural soils was investigated in water-saturated soil columns. The transport of TiO2 and CuO-NPs were assessed in six soils with three different textures (from sand to clay) and two contrasted organic matter (OM) contents for each texture. TiO2 mobility was very low in all soils, regardless of texture and OM content. Mass recoveries were always less than 5%, probably in relation with the strong homo-aggregation of TiO2-NPs observed in all soil solutions, with apparent sizes 3-6 times larger than their nominal size. This low mobility suggests that TiO2-NPs present a low risk of direct groundwater contamination in contrasted surface soils. Although their retention was also generally high (more than 86%), CuO nanoparticles were found to be mobile in all soils. This is probably related to their smaller apparent size and low capacity of homo-aggregation of CuO-NPs in all soil solutions. No clear influence of neither soil texture or soil total organic matter content could be observed on CuO transport. However, this study shows that in contrasted agricultural soils, CuO-NPs transport is mainly controlled by the solutes dissolved in soil solution (DOC and PO4 species), rather than by the properties of the soil solid phase.

3.
Microb Ecol ; 82(2): 470-483, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33443587

RESUMO

Microbial spatial distribution has mostly been studied at field to global scales (i.e., ecosystem scales). However, the spatial organization at small scales (i.e., centimeter to millimeter scales), which can help improve our understanding of the impacts of spatial communities structure on microbial functioning, has received comparatively little attention. Previous work has shown that small-scale spatial structure exists in soil microbial communities, but these studies have not compared soils from geographically distant locations, nor have they utilized community ecology approaches, such as the core and satellite hypothesis and/or abundance-occupancy relationships, often used in macro-ecology, to improve the description of the spatial organization of communities. In the present work, we focused on bacterial diversity (i.e., 16S rRNA gene sequencing) occurring in micro-samples from a variety of locations with different pedo-climatic histories (i.e., from semi-arid, alpine, and temperate climates) and physicochemical properties. The forms of ecological spatial relationships in bacterial communities (i.e., occupancy-frequency and abundance-occupancy) and taxa distributions (i.e., habitat generalists and specialists) were investigated. The results showed that bacterial composition differed in the four soils at the small scale. Moreover, one soil presented a satellite mode distribution, whereas the three others presented bimodal distributions. Interestingly, numerous core taxa were present in the four soils among which 8 OTUs were common to the four sites. These results confirm that analyses of the small-scale spatial distribution are necessary to understand consequent functional processes taking place in soils, affecting thus ecosystem functioning.


Assuntos
Microbiota , Solo , Biodiversidade , Ecossistema , RNA Ribossômico 16S/genética , Microbiologia do Solo
4.
Bioelectromagnetics ; 41(4): 279-288, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32207548

RESUMO

On the basis of Gram-negative bacterium Escherichia coli models previously published in the literature, the transmembrane voltage induced by the application of an alternating current (AC) electric field on a bacterial suspension is calculated using COMSOL Multiphysics software, in the range 1-20 MHz, for longitudinal and transverse field orientations. The voltages developed on each of the three layers of the cell wall are then calculated using an electrical equivalent circuit. This study shows that the overall voltage on the cell wall, whose order of magnitude is a few tens of µV, is mainly distributed on inner and outer layers, while a near-zero voltage is found on the periplasm, due to its much higher electrical conductivity compared with the other layers. Although the outer membrane electrical conductivity taken in the model is a thousand times higher than that of the inner membrane, the voltage there is about half of that on the inner membrane, due to capacitive effects. It follows that the expression of protein complexes anchored in the inner membrane could potentially be disrupted, inducing in particular a possible perturbation of biological processes related to cellular respiration and proton cycle, and leading to growth inhibition as a consequence. Protein complexes anchored in the outer membrane or constituting a bridge between the three layers of the cell wall, such as some porins, may also undergo the same action, which would add another growth inhibition factor, as a result of deficiency in porin filtration function when the external environment contains biocides. Bioelectromagnetics. 2020;41:279-288 © 2020 Bioelectromagnetics Society.


Assuntos
Parede Celular/química , Escherichia coli/citologia , Membrana Celular/química , Membrana Celular/metabolismo , Parede Celular/metabolismo , Condutividade Elétrica , Estimulação Elétrica , Eletrofisiologia/métodos , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos
5.
Sci Total Environ ; 722: 137783, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208245

RESUMO

Groundwater is essential for the Earth biosphere but is often contaminated by harmful chemical compounds due to both anthropogenic and natural causes. A key factor controlling the fate of harmful chemicals in groundwater is the reduction/oxidation (redox) conditions. The formation factors for the groundwater redox conditions are insufficiently understood. In this study, long-term groundwater quality beneath one of the world megacities was monitored and evaluated. We measured and compared hydrogeochemical conditions including groundwater quality (35 chemical parameters) and redox conditions of five aquifers in the Arakawa Lowland and Musashino Upland, southern Kanto Plain of the Tokyo Metropolitan area, Japan. Monitoring results suggested the following: The main origin of groundwater is precipitation in both the Lowland and Upland areas. The three aquifers in the Arakawa Lowland are likely fully separated, with one unconfined and two confined aquifers under iron reducing and methanogenic conditions, respectively. Oppositely, in the Musashino Upland, the water masses in the two aquifers are likely partly connected, under aerobic conditions, and undergoing the same groundwater recharge and flow processes under similar hydrogeological conditions. The different groundwater redox conditions observed are likely caused by the very different groundwater residence times for the Arakawa Lowland and Musashino Upland.

6.
Front Microbiol ; 11: 576750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519725

RESUMO

Primary Biogenic Organic Aerosols (PBOA) were recently shown to be produced by only a few types of microorganisms, emitted by the surrounding vegetation in the case of a regionally homogeneous field site. This study presents the first comprehensive description of the structure and main sources of airborne microbial communities associated with temporal trends in Sugar Compounds (SC) concentrations of PM10 in 3 sites under a climatic gradient in France. By combining sugar chemistry and DNA Metabarcoding approaches, we intended to identify PM10-associated microbial communities and their main sources at three sampling-sites in France, under different climates, during the summer of 2018. This study accounted also for the interannual variability in summer airborne microbial community structure (bacteria and fungi only) associated with PM10-SC concentrations during a 2 consecutive years' survey at one site. Our results showed that temporal changes in PM10-SC in the three sites are associated with the abundance of only a few specific taxa of airborne fungi and bacterial. These taxa differ significantly between the 3 climatic regions studied. The microbial communities structure associated with SC concentrations of PM10 during a consecutive 2-year study remained stable in the rural area. Atmospheric concentration levels of PM10-SC species varied significantly between the 3 study sites, but with no clear difference according to site typology (rural vs. urban), suggesting that SC emissions are related to regional rather than local climatic characteristics. The overall microbial beta diversity in PM10 samples is significantly different from that of the main vegetation around the urban sites studied. This indicates that the airborne microorganisms at these urban sites are not solely from the immediate surrounding vegetation, which contrasts with observations at the scale of a regionally homogeneous rural site in 2017. These results improve our understanding of the spatial behavior of tracers of PBOA emission sources, which need to be better characterized to further implement this important mass fraction of Organic Matter (OM) in Chemical Transport models (CTM).

7.
Front Microbiol ; 9: 3102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619181

RESUMO

Metal-oxide nanoparticles (NPs) such as copper oxide (CuO) NPs offer promising perspectives for the development of novel agro-chemical formulations of pesticides and fertilizers. However, their potential impact on agro-ecosystem functioning still remains to be investigated. Here, we assessed the impact of CuO-NPs (0.1, 1, and 100 mg/kg dry soil) on soil microbial activities involved in the carbon and nitrogen cycles in five contrasting agricultural soils in a microcosm experiment over 90 days. Additionally, in a pot experiment, we evaluated the influence of plant presence on the toxicity of CuO-NPs on soil microbial activities. CuO-NPs caused significant reductions of the three microbial activities measured (denitrification, nitrification, and soil respiration) at 100 mg/kg dry soil, but the low concentrations (0.1 and 1 mg/kg) had limited effects. We observed that denitrification was the most sensitive microbial activity to CuO-NPs in most soil types, while soil respiration and nitrification were mainly impacted in coarse soils with low organic matter content. Additionally, large decreases in heterotrophic microbial activities were observed in soils planted with wheat, even at 1 mg/kg for soil substrate-induced respiration, indicating that plant presence did not mitigate or compensate CuO-NP toxicity for microorganisms. These two experiments show that CuO-NPs can have detrimental effects on microbial activities in soils with contrasting physicochemical properties and previously exposed to various agricultural practices. Moreover, we observed that the negative effects of CuO-NPs increased over time, indicating that short-term studies (hours, days) may underestimate the risks posed by these contaminants in soils.

8.
Sci Rep ; 7(1): 11617, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912590

RESUMO

Particulate matter (PM) induces oxidative stress in vivo, leading to adverse health effects. Oxidative potential (OP) of PM is increasingly studied as a relevant metric for health impact (instead of PM mass concentration) as much of the ambient particle mass do not contribute to PM toxicity. Several assays have been developed to quantify PM oxidative potential and a widely used one is the acellular dithiothreitol (DTT) assay. However in such assays, particles are usually extracted with methanol or Milli-Q water which is unrepresentative of physiological conditions. For this purpose, OPDTT measurements after simulated lung fluids (SLF) extraction, in order to look at the impact of simulated lung fluid constituents, were compared to Milli-Q water extraction measurements. Our major finding is a significant decrease of the OPDTT when the artificial lysosomal fluid (ALF) solution was used. Indeed, ligand compounds are present in the SLF solutions and some induce a decrease of the OP when compared to water extraction. Our results suggest that the effect of ligands and complexation in lining fluids towards PM contaminants probably has been underestimated and should be investigated further.


Assuntos
Pulmão/metabolismo , Oxirredução , Estresse Oxidativo , Material Particulado/efeitos adversos , Material Particulado/química , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Biomarcadores , Concentração de Íons de Hidrogênio , Ligantes , Material Particulado/análise
9.
Nanotoxicology ; 11(2): 247-255, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28151030

RESUMO

Titanium-dioxide nanoparticles (TiO2-NPs) are increasingly released in agricultural soils through, e.g. biosolids, irrigation or nanoagrochemicals. Soils are submitted to a wide range of concentrations of TiO2-NPs depending on the type of exposure. However, most studies have assessed the effects of unrealistically high concentrations, and the dose-response relationships are not well characterized for soil microbial communities. Here, using soil microcosms, we assessed the impact of TiO2-NPs at concentrations ranging from 0.05 to 500 mg kg-1 dry-soil, on the activity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira). In addition, aggregation and oxidative potential of TiO2-NPs were measured in the spiking suspensions, as they can be important drivers of TiO2-NPs toxicity. After 90 days of exposure, non-classical dose-response relationships were observed for nitrifier abundance or activity, making threshold concentrations impossible to compute. Indeed, AOA abundance was reduced by 40% by TiO2-NPs whatever the concentration, while Nitrospira was never affected. Moreover, AOB and Nitrobacter abundances were decreased mainly at intermediate concentrations nitrification was reduced by 25% at the lowest (0.05 mg kg-1) and the highest (100 and 500 mg kg-1) TiO2-NPs concentrations. Path analyses indicated that TiO2-NPs affected nitrification through an effect on the specific activity of nitrifiers, in addition to indirect effects on nitrifier abundances. Altogether these results point out the need to include very low concentrations of NPs in soil toxicological studies, and the lack of relevance of classical dose-response tests and ecotoxicological dose metrics (EC50, IC50…) for TiO2-NPs impact on soil microorganisms.


Assuntos
Nanopartículas/toxicidade , Microbiologia do Solo , Solo/química , Titânio/toxicidade , Amônia/análise , Archaea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Nanopartículas/química , Nitrificação , Nitrobacter/efeitos dos fármacos , Oxirredução , Microbiologia do Solo/normas , Titânio/química
10.
Bioelectromagnetics ; 38(3): 213-219, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28012193

RESUMO

In this work, the problem of intracellular currents in longilinear bacteria, such as Escherichia coli, suspended in a physiological medium and submitted to a harmonic voltage (AC), is analyzed using the Finite-Element-based software COMSOL Multiphysics. Bacterium was modeled as a cylindrical capsule, ended by semi-spheres and surrounded by a dielectric cell wall. An equivalent single-layer cell wall was defined, starting from the well-recognized three-shell modeling approach. The bacterium was considered immersed in a physiological medium, which was also taken into account in the modeling. A new complex transconductance was thus introduced, relating the complex ratio between current inside the bacterium and voltage applied between two parallel equipotential planes, separated by a realistic distance. When voltage was applied longitudinally relative to the bacterium main axis, numerical results in terms of frequency response in the 1-20 MHz range for E. coli cells revealed that transconductance magnitude exhibited a maximum at a frequency depending on the cell wall capacitance. This occurred in spite of the purely passive character of the model and could be explained by an equivalent electrical network giving very similar results and showing special conditions for lateral paths of the currents through the cell wall. It is shown that the main contribution to this behavior is due to the conductive part of the current. Bioelectromagnetics. 38:213-219, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Fenômenos Eletrofisiológicos , Escherichia coli/fisiologia , Modelos Teóricos , Eletrofisiologia/métodos , Software
11.
Biofouling ; 32(10): 1235-1244, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27827532

RESUMO

The development of a reliable model allowing accurate predictions of biofilm growth in porous media relies on a good knowledge of the temporal evolution of biofilm structure within the porous network. Since little is known about the real 3-D structure of biofilms in porous media, this work was aimed at developing a new experimental protocol to visualize the 3-D microstructure of the inside of a porous medium using laboratory X-ray microtomography. A reliable and reproducible methodology is proposed for (1) growing a biofilm inside a porous medium, and (2) X-ray tomography-based characterization of the temporal development of the biofilm at the inlet of the biofilter. The statistical analysis proposed here also validates the results presented in the literature based on a biofilm structure single measurement.


Assuntos
Biofilmes/crescimento & desenvolvimento , Imageamento Tridimensional/métodos , Modelos Teóricos , Pseudomonas putida/fisiologia , Microtomografia por Raio-X/métodos , Meios de Contraste/química , Laboratórios , Naftalenos/química , Porosidade , Propriedades de Superfície
12.
Environ Sci Technol ; 50(19): 10693-10699, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27589234

RESUMO

Soils are exposed to nanoparticles (NPs) as a result of their increasing use in many commercial products. Adverse effects of NPs on soil microorganisms have been reported in several ecotoxicological studies using microcosms. Although repeated exposures are more likely to occur in soils, most of these previous studies were performed as a single exposure to NPs. Contrary to single contamination, the study of multiple NP contaminations in soils requires the use of specialized setups. Using a soil column experiment, we compared the influence of single and repeated exposures (one, two, or three exposures that resulted in the same final concentration applied) on the transport of titanium dioxide (TiO2) NPs through soil and the effect of these different exposure scenarios on the abundance and activity of soil nitrifying microbial communities after a 2 month incubation. The transport of TiO2 NPs was very limited under both single and repeated exposures and was highest for the lowest concentration injected during the first application. Significant decreases in nitrification activity and ammonia-oxidizing archaea and bacteria populations were observed only for the repeated exposure scenario (three TiO2 NP contaminations). These results suggest that, under repeated exposures, the transport of TiO2 NPs to deep soil layers and groundwater is limited and that a chronic contamination is more harmful for the soil microbiological functioning than a single exposure.


Assuntos
Microbiologia do Solo , Solo , Archaea , Nanopartículas/toxicidade , Nitrificação , Titânio/toxicidade
13.
Sci Rep ; 6: 33643, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659196

RESUMO

Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg-1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function.

14.
J Hazard Mater ; 300: 538-545, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26253233

RESUMO

Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

15.
J Hazard Mater ; 283: 529-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25464292

RESUMO

Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil.


Assuntos
Bactérias/efeitos dos fármacos , Carbono/química , Nanopartículas/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Titânio/toxicidade , Agricultura , Solo/química
16.
J Hazard Mater ; 273: 231-8, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24747375

RESUMO

Bacterial biosorption of heavy metals is often considered as a surface complexation process, without considering other retention compartments than cell walls. Although this approach gives a good description of the global biosorption process, it hardly permits the prediction of the fate of biosorbed metals in the environment. This study examines the subcellular distribution of cadmium (Cd) in the metal-tolerant bacterium Cupriavidus metallidurans CH34 through the comparison of an indirect chemical method (washing cells with EDTA) and a direct physical method (physical disruption of cells). The chemical washing approach presented strong experimental biases leading to the overestimation of washed amount of Cd, supposedly bound to cell membranes. On the contrary, the physical disruption approach gave reproducible and robust results of Cd subcellular distribution. Unexpectedly, these results showed that over 80% of passively biosorbed Cd is internalized in the cytoplasm. In disagreement with the common concept of surface complexation of metals onto bacteria the cell wall was poorly reactive to Cd. Our results indicate that metal sorption onto bacterial surfaces is only a first step in metal management by bacteria and open new perspectives on metal biosorption by bacteria in the environment, with implications for soil bioremediation or facilitated transport of metals by bacteria.


Assuntos
Cádmio/química , Cádmio/metabolismo , Quelantes/química , Cupriavidus , Ácido Edético/química , Adsorção , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Cupriavidus/química , Cupriavidus/metabolismo , Cupriavidus/ultraestrutura , Citoplasma/metabolismo , Microscopia Eletrônica de Transmissão , Pressão
17.
Sci Total Environ ; 481: 266-73, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24602911

RESUMO

Sulfamethoxazole (SMX) is a persistent sulfonamide antibiotic drug used in the veterinary and human medical sectors and is widely detected in natural waters. To better understand the reactive transport of this antibiotic in soil, the speciation of the SMX-Cu(II)-H(+) system in solution and the combined sorption of these components in a natural vineyard soil were investigated by acid-base titrimetry and infrared spectroscopy. Cu(II) is considered to represent a strongly complexing trace element cation (such as Cd(2+), Zn(2+), Pb(2+), Ni(2+), etc.) in comparison to more prevalent but more weakly binding cations (such as Ca(2+) and Mg(2+)). Titrimetric studies showed that, relative to other antibiotics, such as tetracycline, SMX is a weak copper chelating agent and a weak soil sorbent at the soil pH (pH6). However, the sorption of SMX in soil increases strongly (by a factor of 6) in the presence of copper. This finding strongly supports the hypothetical formation of ternary SMX-Cu-soil complexes, especially considering that copper is dominantly sorbed in a state at pH6. The data were successfully modelled with PhreeqC assuming the existence of binary and ternary surface complexes in equilibrium with aqueous Cu, SMX and Cu-SMX complexes. It is thought that other strongly complexing cations present on the surface of reactive organic and mineral soil phases, such as Cd(II), Ni(II), Zn(II), Pb(II), Fe(II/III), Mn(II/IV) and Al(III), affect the solid/solution partitioning of SMX. This study thus suggests that surface-adsorbed cations significantly increase the sorption of SMX.


Assuntos
Cobre/química , Modelos Químicos , Poluentes do Solo/química , Solo/química , Sulfametoxazol/química , Adsorção , Quelantes/química , Concentração de Íons de Hidrogênio
18.
Sci Total Environ ; 466-467: 681-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23959219

RESUMO

In this study we evaluated the effect of the long term organic management of a vineyard-soil on the biogeochemistry of copper at the micro-aggregate scale. The model vineyard-soil (Mâcon-France) experienced a long-term field-experiment that consisted in amendments and vegetations with various materials and plants. We studied specifically the effect of Straw (S) and Conifer Compost (CC) organic amendments and Clover (Cl) and Fescue (F) vegetation on the fate of copper (fungicide) in the surface layer of this loamy soil, through a comparison with the Non Amended soil (NA). After collection the five soils were immediately physically fractionated in order to obtain 5 granulometric size-fractions. All soils and size-fractions were quantitatively characterized in terms of granulometry, chemical content and copper distribution, speciation and bioavailability to bacteria and plants. The results showed strong increases of soil-constituents aggregation for all treatments (Cl>CC>S>F>NA), in relation with the increased cementation of soil-constituents by organic matter (OM). The distribution patterns of all major elements and organic carbon were found highly variable within the soil sub-fractions and also between the 5 treatments. Due to their specific inorganic and organic composition, soil sub-fractions can thus be considered as a specific microbial habitat. Added OM accumulated preferentially in the 20-2 µm and in the >250 µm of the 5 soils. The distribution patterns of copper as well as its speciation and bioavailability to bacteria in the soil sub-fractions were shown to be strongly different among the five soils, in relation with OM distribution. Our results also suggest that Cu-bioavailability to plants is controlled by soil-rhizosphere structure. Altogether our results permitted to show that long-term organic management of a vineyard soil induced stable modifications of soil physical and chemical properties at both macro and micro-scales. These modifications affected in turn the micro-scale biogeochemistry of copper, and especially its bioavailability to bacteria and plants.


Assuntos
Bactérias/metabolismo , Cobre/farmacocinética , Fungicidas Industriais/farmacocinética , Agricultura Orgânica/métodos , Plantas/metabolismo , Microbiologia do Solo , Disponibilidade Biológica , Cobre/química , Cobre/metabolismo , França , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Estações do Ano , Solo/química , Espectrofotometria Atômica
19.
Environ Pollut ; 184: 605-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23948261

RESUMO

The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core ((110m)Ag) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled ((110m)Ag) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment.


Assuntos
Nanopartículas/análise , Dióxido de Silício/análise , Poluentes Químicos da Água/análise , Coloides/química , Monitoramento Ambiental/métodos , Nanopartículas/química , Porosidade , Dióxido de Silício/química , Propriedades de Superfície , Poluentes Químicos da Água/química
20.
Environ Pollut ; 184: 613-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24051031

RESUMO

Three types of labeled silica nanoparticles were used in transport experiments in saturated sand. The goal of this study was to evaluate both the efficiency of labeling techniques (fluorescence (FITC), metal (Ag(0) core) and radioactivity ((110m)Ag(0) core)) in realistic transport conditions and the reactive transport of silica nanocolloids of variable size and concentration in porous media. Experimental results obtained under contrasted experimental conditions revealed that deposition in sand is controlled by nanoparticles size and ionic strength of the solution. A mathematical model is proposed to quantitatively describe colloid transport. Fluorescent labeling is widely used to study fate of colloids in soils but was the less sensitive one. Ag(0) labeling with ICP-MS detection was found to be very sensitive to measure deposition profiles. Radiolabeled ((110m)Ag(0)) nanoparticles permitted in situ detection. Results obtained with radiolabeled nanoparticles are wholly original and might be used for improving the modeling of deposition and release dynamics.


Assuntos
Modelos Químicos , Nanopartículas/análise , Dióxido de Silício/análise , Poluentes Químicos da Água/análise , Coloides/análise , Coloides/química , Fluorescência , Modelos Teóricos , Nanopartículas/química , Concentração Osmolar , Porosidade , Dióxido de Silício/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...