Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Access Microbiol ; 5(7)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601431

RESUMO

Enterobacter cloacae is among the most frequently isolated species described in clinical infections and is commonly associated with a multidrug resistance (MDR) phenotype. We present the draft genome sequence of a MDR E. cloacae isolated in Nigeria from the urine sample of an adult male outpatient diagnosed with symptomatic recurrent bacteriuria. The isolate was found to be resistant to ceftriaxone, cefotaxime, cefepime and levofloxacin. Genome analysis revealed the presence of the beta-lactamase chromosomal gene blaCMH-3, which may be responsible for the antibiotic resistance observed in the recurrent E. cloacae urinary tract infection.

2.
PLoS One ; 17(4): e0266891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421196

RESUMO

Citrus canker is one of the main bacterial diseases that affect citrus crops and is caused by Xanthomonas citri which affects all citrus species worldwide. New strategies to control citrus canker are necessary and the use of bacteriophages as biocontrol agent could be an alternative. Phages that infect Xanthomonas species have been studied, such as XacN1, a myovirus that infects X. citri. Here we report the isolation and characterization of a new jumbo phage, vb_XciM_LucasX, which infects X. citri and X. fuscans. Transmission electron microscopy allowed classification of LucasX in the Myoviridae family, which was corroborated by its genomic sequencing, annotation, and proteome clustering. LucasX has a 305,651 bp-long dsDNA genome. ORF prediction and annotation revealed 157 genes encoding putative structural proteins such as capsid and tail related proteins and phage assembly associated proteins, however, for most of the structural proteins it was not possible assign specific functions. Its genome encodes several proteins related to DNA replication and nucleotide metabolism, five putative RNA polymerases, at least one homing endonuclease mobile element, a terminase large subunit (TerL), an endolysin and many proteins classified as beneficial to the host. Proteome clustering and phylogeny analyses showed that LucasX is a new jumbo phage having as its closest neighbor the Xanthomonas jumbo phage Xoo-sp14. LucasX presented a burst size of 40 PFU/infected cell of X. citri 306, was completely inactivated at temperatures above 50°C, presented survival lower than 25% after 80 s of exposition to artificial UV light and had practically no tolerance to concentrations above 2.5 g/L NaCl or 40% ethanol. LucasX presented optimum pH at 7 and a broad range of Xanthomonas hosts, infecting twenty-one of the twenty-three strains tested. Finally, the LucasX yield was dependent on the host strain utilized, resulting one order of magnitude higher in X. fuscans C 752 than in X. citri 306, which points out to the possibility of phage yield improvement, an usual challenge for biocontrol purposes.


Assuntos
Bacteriófagos , Citrus , Xanthomonas , Citrus/microbiologia , Myoviridae , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Proteoma , Xanthomonas/genética
3.
BMC Genomics ; 22(1): 652, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507539

RESUMO

BACKGROUND: Composting is an important technique for environment-friendly degradation of organic material, and is a microbe-driven process. Previous metagenomic studies of composting have presented a general description of the taxonomic and functional diversity of its microbial populations, but they have lacked more specific information on the key organisms that are active during the process. RESULTS: Here we present and analyze 60 mostly high-quality metagenome-assembled genomes (MAGs) recovered from time-series samples of two thermophilic composting cells, of which 47 are potentially new bacterial species; 24 of those did not have any hits in two public MAG datasets at the 95% average nucleotide identity level. Analyses of gene content and expressed functions based on metatranscriptome data for one of the cells grouped the MAGs in three clusters along the 99-day composting process. By applying metabolic modeling methods, we were able to predict metabolic dependencies between MAGs. These models indicate the importance of coadjuvant bacteria that do not carry out lignocellulose degradation but may contribute to the management of reactive oxygen species and with enzymes that increase bioenergetic efficiency in composting, such as hydrogenases and N2O reductase. Strong metabolic dependencies predicted between MAGs revealed key interactions relying on exchange of H+, NH3, O2 and CO2, as well as glucose, glutamate, succinate, fumarate and others, highlighting the importance of functional stratification and syntrophic interactions during biomass conversion. Our model includes 22 out of 49 MAGs recovered from one composting cell data. Based on this model we highlight that Rhodothermus marinus, Thermobispora bispora and a novel Gammaproteobacterium are dominant players in chemolithotrophic metabolism and cross-feeding interactions. CONCLUSIONS: The results obtained expand our knowledge of the taxonomic and functional diversity of composting bacteria and provide a model of their dynamic metabolic interactions.


Assuntos
Compostagem , Metagenoma , Actinobacteria , Bactérias/genética , Rhodothermus
4.
Microbiol Resour Announc ; 10(31): e0052821, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351231

RESUMO

We report the microbial 16S rRNA gene and internal transcribed spacer (ITS) sequencing data of maize and soybean plants and field soil from eight locations in Brazil. Enterobacter and Pseudomonas were among the most abundant genera. The data suggest the presence of several species that have not been documented for Brazil.

5.
BMC Genomics, v. 22, 652, set. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3946

RESUMO

Background Composting is an important technique for environment-friendly degradation of organic material, and is a microbe-driven process. Previous metagenomic studies of composting have presented a general description of the taxonomic and functional diversity of its microbial populations, but they have lacked more specific information on the key organisms that are active during the process. Results Here we present and analyze 60 mostly high-quality metagenome-assembled genomes (MAGs) recovered from time-series samples of two thermophilic composting cells, of which 47 are potentially new bacterial species; 24 of those did not have any hits in two public MAG datasets at the 95% average nucleotide identity level. Analyses of gene content and expressed functions based on metatranscriptome data for one of the cells grouped the MAGs in three clusters along the 99-day composting process. By applying metabolic modeling methods, we were able to predict metabolic dependencies between MAGs. These models indicate the importance of coadjuvant bacteria that do not carry out lignocellulose degradation but may contribute to the management of reactive oxygen species and with enzymes that increase bioenergetic efficiency in composting, such as hydrogenases and N2O reductase. Strong metabolic dependencies predicted between MAGs revealed key interactions relying on exchange of H+, NH3, O2 and CO2, as well as glucose, glutamate, succinate, fumarate and others, highlighting the importance of functional stratification and syntrophic interactions during biomass conversion. Our model includes 22 out of 49 MAGs recovered from one composting cell data. Based on this model we highlight that Rhodothermus marinus, Thermobispora bispora and a novel Gammaproteobacterium are dominant players in chemolithotrophic metabolism and cross-feeding interactions. Conclusions The results obtained expand our knowledge of the taxonomic and functional diversity of composting bacteria and provide a model of their dynamic metabolic interactions.

6.
Phytopathology ; 110(11): 1751-1755, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32520631

RESUMO

Xylella fastidiosa subsp. pauca, once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D, and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x, and Hib4 isolated, respectively, from coffee, plum, and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.


Assuntos
Citrus , Hibiscus , Prunus domestica , Xylella , Argentina , Brasil , Café , Doenças das Plantas , Xylella/genética
7.
Phytopathology, v. 110, n. 11, p. 1751-1755, jun. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3065

RESUMO

Xylella fastidiosa subsp. pauca , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x and Hib4 isolated, respectively, from coffee, plum and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.

8.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17726

RESUMO

Xylella fastidiosa subsp. pauca , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x and Hib4 isolated, respectively, from coffee, plum and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.

9.
Braz J Microbiol ; 50(4): 1051-1062, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31440991

RESUMO

The use of rubber has increased over the years, leading to a series of environmental problems due to its indefinite decomposition time. Bioremediation employing microorganisms have drawn an increasing interest and originated several studies of microbial rubber degradation. Genome sequencing and in silico analysis demonstrated that G. paraffinivorans MTZ041 isolate encodes the lcp gene (Latex Clearing Protein), responsible for expressing an enzyme that performs the first step in the assimilation of synthetic and natural rubber. Growth curves and scanning electron microscopy (SEM) were conducted for MTZ041 in natural (NR) and synthetic rubber (IR) as sole carbon source during 11 weeks. After 80 days, robust growth was observed and SEM analysis revealed the presence of bacilli and the formation of biofilm-like structures on natural and synthetic rubber. This is the first report of a G. paraffinivorans rubber degrader. Given the complexity of this substrate and the relative small number of microorganisms with this ability, the description and characterization of MTZ041 is of great importance on bioremediation processes of rubber products.


Assuntos
Actinobacteria/metabolismo , Hemiterpenos/metabolismo , Látex/metabolismo , Polímeros/metabolismo , Terpenos/metabolismo , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Genoma Bacteriano , Hemiterpenos/química , Látex/química , Polímeros/química , Terpenos/química
10.
PLoS One ; 14(4): e0215396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998736

RESUMO

Hydrocarbons are important environmental pollutants, and the isolation and characterization of new microorganisms with the ability to degrade these compounds are important for effective biodegradation. In this work we isolated and characterized several bacterial isolates from compost, a substrate rich in microbial diversity. The isolates were obtained from selective culture medium containing n-hexadecane, aiming to recover alkane-degraders. Six isolates identified as Gordonia by MALDI-TOF and 16S rRNA sequencing had the ability to degrade n-hexadecane in three days. Two isolates were selected for genomic and functional characterization, Gordonia paraffinivorans (MTZ052) and Gordonia sihwensis (MTZ096). The CG-MS results showed distinct n-hexadecane degradation rates for MTZ052 and MTZ096 (86% and 100% respectively). The genome sequence showed that MTZ052 encodes only one alkane degrading gene cluster, the CYP153 system, while MTZ096 harbors both the Alkane Hydroxylase (AH) and the CYP153 systems. qPCR showed that both gene clusters are induced by the presence of n-hexadecane in the growth medium, suggesting that G. paraffinivorans and G. sihwensis use these systems for degradation. Altogether, our results indicate that these Gordonia isolates have a good potential for biotransformation of hydrocarbons.


Assuntos
Actinobacteria , Alcanos/metabolismo , Compostagem , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genoma Bacteriano
11.
Clinics (Sao Paulo) ; 72(10): 642-644, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29160428

RESUMO

OBJECTIVE: We describe an IncX4 pHC891/16mcr plasmid carrying mcr-1 in a colistin-resistant and carbapenem-susceptible E. coli isolate (HC891/16), ST156, which caused a blood infection in a Brazilian patient with gallbladder adenocarcinoma. METHODS: Strain HC891/16 was subjected to whole genome sequencing using the MiSeq Platform (Illumina, Inc., USA). Assembly was performed using Mira and ABACAS. RESULTS: The isolates showed resistance only to ciprofloxacin, ampicillin and cefoxitin, and whole-genome sequencing revealed the presence of aac(6')Ib-cr and blaTEM1. CONCLUSION: Our findings warn of the possible silent dissemination of colistin resistance by carbapenem-susceptible mcr-1 producers, as colistin susceptibility is commonly tested only among carbapenem-resistant isolates.


Assuntos
Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Carbapenêmicos/farmacologia , Colistina/farmacologia , Proteínas de Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Idoso , Brasil , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Feminino , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/efeitos dos fármacos
12.
BMC Genomics ; 18(1): 346, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28472930

RESUMO

BACKGROUND: Among viruses, bacteriophages are a group of special interest due to their capacity of infecting bacteria that are important for biotechnology and human health. Composting is a microbial-driven process in which complex organic matter is converted into humus-like substances. In thermophilic composting, the degradation activity is carried out primarily by bacteria and little is known about the presence and role of bacteriophages in this process. RESULTS: Using Pseudomonas aeruginosa as host, we isolated three new phages from a composting operation at the Sao Paulo Zoo Park (Brazil). One of the isolated phages is similar to Pseudomonas phage Ab18 and belongs to the Siphoviridae YuA-like viral genus. The other two isolated phages are similar to each other and present genomes sharing low similarity with phage genomes in public databases; we therefore hypothesize that they belong to a new genus in the Podoviridae family. Detailed genomic descriptions and comparisons of the three phages are presented, as well as two new clusters of phage genomes in the Viral Orthologous Clusters database of large DNA viruses. We found sequences encoding homing endonucleases that disrupt a putative ribonucleotide reductase gene and an RNA polymerase subunit 2 gene in two of the phages. These findings provide insights about the evolution of two-subunits RNA polymerases and the possible role of homing endonucleases in this process. Infection tests on 30 different strains of bacteria reveal a narrow host range for the three phages, restricted to P. aeruginosa PA14 and three other P. aeruginosa clinical isolates. Biofilm dissolution assays suggest that these phages could be promising antimicrobial agents against P. aeruginosa PA14 infections. Analyses on composting metagenomic and metatranscriptomic data indicate association between abundance variations in both phage and host populations in the environment. CONCLUSION: The results about the newly discovered and described phages contribute to the understanding of tailed bacteriophage diversity, evolution, and role in the complex composting environment.


Assuntos
Genoma Viral , Fagos de Pseudomonas/genética , Sequência de Bases , Biofilmes , Códon , Sequência Conservada , Endodesoxirribonucleases/genética , Evolução Molecular , Variação Genética , Mutagênese Insercional , Filogenia , Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/ultraestrutura , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Tropismo Viral
13.
Sci Rep ; 6: 38915, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941956

RESUMO

Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.


Assuntos
Compostagem , Consórcios Microbianos , Microbiologia do Solo , Bactérias/genética , Biodegradação Ambiental , Biomassa , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/metabolismo , Metagenômica , RNA Ribossômico 16S/genética
14.
BMC Microbiol ; 16(1): 111, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27316672

RESUMO

BACKGROUND: A large collection of sequenced mycobacteriophages capable of infecting a single host strain of Mycobacterium smegmatis shows considerable genomic diversity with dozens of distinctive types (clusters) and extensive variation within those sharing evident nucleotide sequence similarity. Here we profiled the mycobacterial components of a large composting system at the São Paulo zoo. RESULTS: We isolated and sequenced eight mycobacteriophages using Mycobacterium smegmatis mc(2)155 as a host. None of these eight phages infected any of mycobacterial strains isolated from the same materials. The phage isolates span considerable genomic diversity, including two phages (Barriga, Nhonho) related to Subcluster A1 phages, two Cluster B phages (Pops, Subcluster B1; Godines, Subcluster B2), three Subcluster F1 phages (Florinda, Girafales, and Quico), and Madruga, a relative of phage Patience with which it constitutes the new Cluster U. Interestingly, the two Subcluster A1 phages and the three Subcluster F1 phages have genomic relationships indicating relatively recent evolution within a geographically isolated niche in the composting system. CONCLUSIONS: We predict that composting systems such as those used to obtain these mycobacteriophages will be a rich source for the isolation of additional phages that will expand our view of bacteriophage diversity and evolution.


Assuntos
Micobacteriófagos/genética , Micobacteriófagos/isolamento & purificação , Mycobacterium/genética , Mycobacterium/virologia , Microbiologia do Solo , Solo , Bacteriófagos/genética , Sequência de Bases , Brasil , DNA Bacteriano/genética , DNA Viral/genética , Evolução Molecular , Genes Bacterianos , Variação Genética , Genoma Viral , Família Multigênica , Micobacteriófagos/classificação , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Mycobacterium smegmatis/classificação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/isolamento & purificação , Mycobacterium smegmatis/virologia , Filogenia
15.
PLoS One ; 8(4): e61928, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637931

RESUMO

Composting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders.


Assuntos
Biodiversidade , Biomassa , Metagenômica , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Composição de Bases , Brasil , Análise por Conglomerados , Ordem dos Genes , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/metabolismo , Lignina/metabolismo , Anotação de Sequência Molecular , Pectinas/metabolismo , RNA Ribossômico 16S , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...