Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 410: 135429, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641915

RESUMO

Wearable sensors such as those made with paper are needed for non-destructive routine analysis of pesticides on plants, fruits, and vegetables. Herein we report on electrochemical sensors made with screen-printed carbon electrodes on kraft and parchment papers to detect the fungicide carbendazim. A systematic optimization was performed to find that electrochemical sensors on kraft paper treated in an acidic medium led to the highest performance, with a detection limit of 0.06 µM for carbendazim. The enhanced sensitivity for this sensor was attributed to the porous nature of kraft paper, which allowed for a large electrode surface area, and to the carboxylic groups formed during electrochemical activation. As a proof-of-concept, the electrochemical sensor attached to the skin of apple and cabbage was used to detect carbendazim with the same performance as the gold standard method, thus demonstrating that the sensor can be used in the farm and on supermarket shelves.


Assuntos
Brassica , Malus , Limite de Detecção , Carbamatos/análise , Técnicas Eletroquímicas/métodos , Eletrodos
2.
ACS Appl Mater Interfaces ; 14(27): 31455-31462, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35776164

RESUMO

Flexible, fully printed immunosensors can meet the requirements of precision nutrition, but this demands optimized molecular architectures to reach the necessary sensitivity. Herein, we report on flexible and label-free immunosensor chips made with tree-like gold dendrites (AuDdrites) electrochemically formed by selective desorption of l-cysteine (L-cys) on (111) gold planes. Electrodeposition was used because it is scalable and cost-effective for a rapid, direct growth of Au hyperbranched dendritic structures. The 25-hydroxyvitamin D3 (25(OH)D3) metabolite was detected within 15 min with a limit of detection (LOD) of 0.03 ng mL-1. This high performance was possible due to the careful optimization of the electroactive layer and working conditions for square wave voltammetry (SWV). Electrocrystallization was manipulated by controlling the deposition potential and the molar ratio between HAuCl4 and L-cys. Metabolite detection was performed on human serum and saliva samples with adequate recovery between 97% and 100%. The immunosensors were stable and reproducible, unresponsive to interference from other molecules in human serum and saliva. They can be extended for use as wearable sensors with their mechanical flexibility and possible customization.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Calcifediol , Dendritos , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Humanos , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química
3.
ACS Appl Mater Interfaces ; 14(19): 22114-22121, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35324137

RESUMO

We report on a photoelectrochemical (PEC) device to detect prostatic-specific antigen (PSA) under visible LED light irradiation within the point-of-care (POC) paradigm. The device consists of a 3D printed miniaturized photoelectrochemical system and a disposable PEC immunosensor made with screen-printed carbon electrodes (SPCEs). The SPCEs were coated with nickel single atoms anchored on graphitic carbon nitride (Ni-gC3N4), titanium dioxide nanoparticles (TiO2), and aryl diazonium salt prepared from p-aminobenzoic acid. The electrodeposited aryl diazonium on Ni-gC3N4/TiO2 decreased the recombination of photogenerated charge carriers, leading to a 3.1-fold increase in the photocurrent compared to pure TiO2. This functionalization strategy provides carboxylic groups to anchor antibodies via the carbodiimide reaction, which may be extended to any other type of immunosensor. Under optimal conditions, the PEC immunosensor was able to detect PSA from 10-16 to 10-8 g mL-1 with a detection limit of 0.06 fg mL-1. The device robustness was confirmed with reproducibility and stability tests. PSA could also be detected in human serum samples, which demonstrates the potential of the PEC immunosensor for clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Antígeno Prostático Específico , Carbono , Técnicas Eletroquímicas , Eletrodos , Grafite , Humanos , Imunoensaio , Luz , Limite de Detecção , Masculino , Compostos de Nitrogênio , Reprodutibilidade dos Testes , Titânio
4.
Mikrochim Acta ; 189(1): 38, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34958417

RESUMO

A sensitive detection of carbohydrate antigen 15-3 (CA15-3) levels may allow for early diagnosis and monitoring the treatment of breast cancer, but this can only be made in routine clinical practice if low-cost immunosensors are available. In this work, we developed a sandwich-type electrochemical immunosensor capable of rapid detection of CA15-3 with an ultra-low limit of detection (LOD) of 0.08 fg mL-1 within a wide linear concentration range from 0.1 fg mL-1 to 1 µg mL-1. The immunosensor had a matrix of a layer-by-layer film of Au nanoparticles and reduced graphene oxide (Au-rGO) co-electrodeposited on screen-printed carbon electrodes (SPCE). The high sensitivity was achieved by using secondary antibodies (Ab2) labeled with horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2) as signal amplifiers, and hydroquinone (HQ) was used as an electron mediator. The immunosensor was selective for CA15-3 in human serum and artificial saliva samples, robust, and stable to permit storage at 4 °C for more than 30 days. With its high performance, the immunosensor may be incorporated into future point-of-care (POC) devices to determine CA15-3 in distinct biological fluids, including in blood and saliva samples.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Eletroquímicas/métodos , Grafite/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Mucina-1/sangue , Anticorpos Imobilizados/imunologia , Armoracia/enzimologia , Biomarcadores Tumorais/imunologia , Ouro/química , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Hidroquinonas/química , Limite de Detecção , Mucina-1/imunologia , Reprodutibilidade dos Testes , Saliva/química
5.
ACS Appl Mater Interfaces ; 11(34): 30810-30818, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31369703

RESUMO

This study describes a systematic investigation of the electrocatalytic activity of poly[Ni(salen)] films, as catalysts for the electro-oxidation of Cn alcohols (Cn = methanol, ethanol, and glycerol) in alkaline medium. The [Ni(salen)] complex was electropolymerized on a glassy carbon surface and electrochemically activated in NaOH solution by cyclic voltammetry. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy results indicate that during the activation step the polymeric film hydrolyzes, leading to the formation of ß-Ni(OH)2 spherical nanoparticles, with an average size of 2.4 ± 0.5 nm, encapsulated with the poly[Ni(salen)] film. Electrochemical results obtained together with the in situ Fourier transform infrared spectroscopy confirm that the electro-oxidation of methanol, ethanol, and glycerol occurs by involving a cycling oxidation of ß-Ni(OH)2 with the formation of ß-NiOOH species, followed by the charge transfer to the alcohols, which regenerates ß-Ni(OH)2. Analyses of the oxidation products at low potentials indicate that the major product obtained during the oxidation of methanol and glycerol is the formate, while the oxidation of ethanol leads to the formation of acetate. On the other hand, at high potentials (E = 0.6 V), there is evidence that the oxidation of Cn alcohols leads to carbonate ions as an important product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...