Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 642: 190-197, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894878

RESUMO

Biochar, produced through pyrolysis of organic matter, is negatively charged, thus contributing to electrostatic adsorption of cations. However, due to its porous structure and contents of alkaline ashes, the determination of the cation exchange capacity (CEC) is challenging. Literature values for the CEC of biochar are surprisingly variable and are often poorly reproducible, suggesting methodological problems. Here, we modify and critically assess different steps in the existing ammonium acetate (NH4OAc) method (pH 7), where ammonium (NH4+) is displaced by potassium chloride (KCl), following removal of excess NH4OAc with isopropanol, in batch mode. We used pigeon pea biochar to develop the method and conducted a test on three additional biochars with different acid neutralizing capacity. A pretreatment step of biochar was introduced, using diluted hydrochloric acid, to decrease biochar pH to near neutral, so that 1 M NH4OAc effectively buffers the biochar suspension pH at 7. This allows the CEC of all biochars to be determined at pH 7, which is crucial for biochar comparison. The dissolution of ashes may cause relatively large weight losses (e.g. for cacao shell biochar), which need to be accounted for when computing the CEC of raw biochar. The sum of NH4OAC-extractable base cations provided a smaller and better estimate of the CEC than KCl-extractable NH4+. We hypothesize that the overestimation of the CEC based on KCl-extractable NH4+ is due to the ineffectiveness of the relatively large isopropanol molecules to remove excess NH4OAc in biochars rich in micro-pores, due to size exclusion. The amount of base cations removed in the pretreatment was about three (rice husk biochar) to ten times (pigeon pea biochar) greater than the amount of exchangeable cations. The CEC values of biochar increased from 10.8 cmol/Kg carbon to 119.6 cmol/Kg carbon. These values are smaller than reported CEC values of soil organic carbon.

2.
Chemosphere ; 91(11): 1612-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23369636

RESUMO

The sorption of PO4-P, NH4-N and NO3-N to cacao shell and corn cob biochars produced at 300-350°C was quantified. The biochars were used; (i) as received (unwashed), (ii) after rinsing with Millipore water and (iii) following leaching with Millipore water. In addition to sorption, desorption of PO4-P from the unwashed biochars was quantified. There was no sorption of PO4-P to either washed or rinsed biochars, but following leaching, both biochars adsorbed PO4-P and distribution coefficients (Kd L kg(-1)) were very similar for both materials (10(1.1±0.5) for cacao shell biochar and 10(1.0±0.2) for corn cob biochar). The BET surface area and micropore volume increased 80% and 60% for the cacao shell and corn cob biochars following leaching. After 60 d, 1483±45 mg kg(-1) and 172±1 mg kg(-1) PO4-P was released from the cacao shell and corn cob biochars. NH4-N was sorbed by both unwashed biochars, albeit weakly with Kd values around 10(2) L kg(-1). We speculate that NH4-N could bind via an electrostatic exchange with other cationic species on the surface of the biochar. There was no significant release or sorption of NO3-N from or to either of the biochars.


Assuntos
Cacau/metabolismo , Carvão Vegetal/metabolismo , Fosfatos/metabolismo , Solo/química , Zea mays/metabolismo , Absorção , Compostos de Amônio/metabolismo , Técnicas de Química Analítica , Monitoramento Ambiental , Compostos Férricos/metabolismo , Fertilizantes/análise , Indonésia , Nitratos/metabolismo , Especificidade da Espécie , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...