Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38128148

RESUMO

The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.


Assuntos
Aedes , Mosquitos Vetores , Animais , Feminino , Masculino , Filogenia , Mosquitos Vetores/genética , Aedes/genética , Aedes/metabolismo , Splicing de RNA
3.
J Exp Biol ; 225(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129195

RESUMO

Most mosquito species are anautogenous, which means they must blood feed on a vertebrate host to produce eggs, while a few are autogenous and can produce eggs without blood feeding. Egg formation is best understood in the anautogenous mosquito Aedes aegypti, where insulin-like peptides (ILPs), ovary ecdysteroidogenic hormone (OEH) and 20-hydroxyecdysone (20E) interact to regulate gonadotrophic cycles. Circulating hemocytes also approximately double in abundance in conjunction with a gonadotrophic cycle, but the factors responsible for stimulating this increase remain unclear. Focusing on Ae. aegypti, we determined that hemocyte abundance similarly increased in intact blood-fed females and decapitated blood-fed females that were injected with ILP3, whereas OEH, 20E or heat-killed bacteria had no stimulatory activity. ILP3 upregulated insulin-insulin growth factor signaling in hemocytes, but few genes - including almost no transcripts for immune factors - were differentially expressed. ILP3 also stimulated circulating hemocytes to increase in two other anautogenous (Anopheles gambiae and Culex quinquefasciatus) and two facultatively autogenous mosquitoes (Aedes atropalpus and Culex pipiens molestus), but had no stimulatory activity in the obligately autogenous mosquito Toxorhynchites amboinensis. Altogether, our results identify ILPs as the primary regulators of hemocyte proliferation in association with egg formation, but also suggest this response has been lost in the evolution of obligate autogeny.


Assuntos
Aedes , Culex , Aedes/fisiologia , Animais , Feminino , Hemócitos , Insulina , Peptídeos
4.
Mol Ecol ; 31(11): 3228-3240, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34510608

RESUMO

Every organism on Earth depends on interactions with other organisms to survive. In each of these interactions, an organism must utilize the limited toolbox of genes and proteins it possesses to successfully manipulate or cooperate with another species, but it can also co-opt the genome machinery of its partner to expand its available tools. Insect-induced plant galls are an extreme example of this, wherein an insect hijacks the plant's genome to direct the initiation and development of galls consisting of plant tissue. However, previous transcriptomic studies have not evaluated individual tissues within a gall to determine the full extent to which a galling insect manipulates its host plant. Here we demonstrate that the cynipid wasp Dryocosmus quercuspalustris creates a complex parasite-specific organ from red oak tissue via massive changes in host gene expression. Our results show that the gall wasp is not merely modifying oak leaf tissue but creating extensive changes in gene expression between galled and ungalled tissue (differential expression in 28% of genes) and distinct gall tissue types (20% of genes). The outer gall tissue shows increases in various plant defence systems, which is consistent with its predicted functional role of protecting the wasp larva. The inner larval capsule shows suppression of large parts of the plant innate immune system and evidence for the wasp utilizing the plant's RNA interference mechanisms, which may be a potential mechanism for the wasp's control on gall growth.


Assuntos
Parasitos , Quercus , Vespas , Animais , Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Parasita/genética , Larva , Parasitos/genética , Tumores de Planta/genética , Plantas/genética , Quercus/genética , Vespas/genética
5.
Front Genet ; 12: 748135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868218

RESUMO

The parasitoid wasp Muscidifurax raptorellus (Hymenoptera: Pteromalidae) is a gregarious species that has received extensive attention for its potential in biological pest control against house fly, stable fly, and other filth flies. It has a high reproductive capacity and can be reared easily. However, genome assembly is not available for M. raptorellus or any other species in this genus. Previously, we assembled a complete circular mitochondrial genome with a length of 24,717 bp. Here, we assembled and annotated a high-quality nuclear genome of M. raptorellus, using a combination of long-read (104× genome coverage) and short-read (326× genome coverage) sequencing technologies. The assembled genome size is 314 Mbp in 226 contigs, with a 97.9% BUSCO completeness score and a contig N50 of 4.67 Mb, suggesting excellent continuity of this assembly. Our assembly builds the foundation for comparative and evolutionary genomic analysis in the genus of Muscidifurax and possible future biocontrol applications.

7.
BMC Biol ; 19(1): 41, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750380

RESUMO

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Assuntos
Genoma de Inseto , Interações Hospedeiro-Parasita/genética , Controle de Insetos , Muscidae/genética , Animais , Reprodução/genética
8.
Commun Biol ; 3(1): 424, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753684

RESUMO

The New World Screwworm fly, Cochliomyia hominivorax, is a major pest of livestock in South America and Caribbean. However, few genomic resources have been available for this species. A genome of 534 Mb was assembled from long read PacBio DNA sequencing of DNA from a highly inbred strain. Analysis of molecular evolution identified 40 genes that are likely under positive selection. Developmental RNA-seq analysis identified specific genes associated with each stage. We identify and analyze the expression of genes that are likely important for host-seeking behavior (chemosensory), development of larvae in open wounds in warm-blooded animals (heat shock protein, immune response) and for building transgenic strains for genetic control programs including gene drive (sex determination, germline). This study will underpin future experiments aimed at understanding the parasitic lifestyle of the screwworm fly and greatly facilitate future development of strains for efficient systems for genetic control of screwworm.


Assuntos
Calliphoridae/genética , Evolução Molecular , Gado/genética , Infecção por Mosca da Bicheira/genética , Animais , Calliphoridae/patogenicidade , Regulação da Expressão Gênica/genética , Genômica/métodos , Interações Hospedeiro-Parasita/genética , Larva/genética , Larva/crescimento & desenvolvimento , Gado/parasitologia , Controle Biológico de Vetores , RNA-Seq , Infecção por Mosca da Bicheira/parasitologia , América do Sul
9.
G3 (Bethesda) ; 10(8): 2565-2572, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32571804

RESUMO

Jewel wasps in the genus of Nasonia are parasitoids with haplodiploidy sex determination, rapid development and are easy to culture in the laboratory. They are excellent models for insect genetics, genomics, epigenetics, development, and evolution. Nasonia vitripennis (Nv) and N. giraulti (Ng) are closely-related species that can be intercrossed, particularly after removal of the intracellular bacterium Wolbachia, which serve as a powerful tool to map and positionally clone morphological, behavioral, expression and methylation phenotypes. The Nv reference genome was assembled using Sanger, PacBio and Nanopore approaches and annotated with extensive RNA-seq data. In contrast, Ng genome is only available through low coverage resequencing. Therefore, de novo Ng assembly is in urgent need to advance this system. In this study, we report a high-quality Ng assembly using 10X Genomics linked-reads with 670X sequencing depth. The current assembly has a genome size of 259,040,977 bp in 3,160 scaffolds with 38.05% G-C and a 98.6% BUSCO completeness score. 97% of the RNA reads are perfectly aligned to the genome, indicating high quality in contiguity and completeness. A total of 14,777 genes are annotated in the Ng genome, and 72% of the annotated genes have a one-to-one ortholog in the Nv genome. We reported 5 million Ng-Nv SNPs which will facility mapping and population genomic studies in Nasonia In addition, 42 Ng-specific genes were identified by comparing with Nv genome and annotation. This is the first de novo assembly for this important species in the Nasonia model system, providing a useful new genomic toolkit.


Assuntos
Vespas , Wolbachia , Animais , Genoma , Genômica , Laboratórios , Vespas/genética , Wolbachia/genética
10.
G3 (Bethesda) ; 9(5): 1313-1320, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30926723

RESUMO

The flesh fly, Sarcophaga bullata, is a widely-used model for examining the physiology of insect diapause, development, stress tolerance, neurobiology, and host-parasitoid interactions. Flies in this taxon are implicated in myiasis (larval infection of vertebrates) and feed on carrion, aspects that are important in forensic studies. Here we present the genome of S. bullata, along with developmental- and reproduction-based RNA-Seq analyses. We predict 15,768 protein coding genes, identify orthology in relation to closely related flies, and establish sex and developmental-specific gene sets based on our RNA-Seq analyses. Genomic sequences, predicted genes, and sequencing data sets have been deposited at the National Center for Biotechnology Information. Our results provide groundwork for genomic studies that will expand the flesh fly's utility as a model system.


Assuntos
Perfilação da Expressão Gênica , Genoma de Inseto , Genômica , Sarcofagídeos/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Éxons , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons , Anotação de Sequência Molecular , Filogenia , Sarcofagídeos/classificação
11.
Curr Biol ; 28(24): R1370-R1374, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562523

RESUMO

Egan et al. introduce the reader to gall wasps, including a description of their life cycle and complex ecological interactions with host plants and natural enemies.


Assuntos
Interações Hospedeiro-Parasita , Tumores de Planta/parasitologia , Plantas/parasitologia , Simbiose , Vespas/fisiologia , Animais , Fenômenos Fisiológicos Vegetais
12.
BMC Biol ; 16(1): 54, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776407

RESUMO

BACKGROUND: Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control. RESULTS: We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution of proteins involved in ribosome biogenesis and function, transcriptional regulation, and ploidy regulation. Chalcids also show loss or especially rapid evolution of 285 gene clusters conserved in other Hymenoptera, including many that are involved in signal transduction and embryonic development. Comparisons between sexual and asexual lineages of Trichogramma pretiosum reveal that there is no strong evidence for genome degradation (e.g., gene loss) in the asexual lineage, although it does contain a lower repeat content than the sexual lineage. Trichogramma shows particularly rapid genome evolution compared to other hymenopterans. We speculate these changes reflect adaptations to miniaturization, and to life as a specialized egg parasitoid. CONCLUSIONS: The genomes of Trichogramma and related parasitoids are a valuable resource for future studies of these diverse and economically important insects, including explorations of parasitoid biology, symbiosis, asexuality, biological control, and the evolution of miniaturization. Understanding the molecular determinants of parasitism can also inform mass rearing of Trichogramma and other parasitoids for biological control.


Assuntos
Evolução Molecular , Controle Biológico de Vetores , Vespas/classificação , Vespas/genética , Animais , Genômica , Mariposas/parasitologia , Filogenia , Vespas/patogenicidade , Sequenciamento Completo do Genoma/métodos
13.
Ecol Entomol ; 43(2): 146-153, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29731539

RESUMO

Parasitoid wasps sting and inject venom in arthropod hosts, which alters host metabolism and development while keeping the host alive for several days, presumably to induce benefits for the parasitoid young.Here we investigate the consequences of host envenomation on development and fitness of wasp larvae in the ectoparasitoid Nasonia vitripennis, by comparing wasps reared on live unstung, previously stung, and cold-killed hosts. Developmental arrest and suppression of host response to larvae are major venom effects that occur in both stung and cold-killed hosts, but not unstung hosts; while cold-killed hosts lack venom effects that require a living host. Thus, cold-killed hosts mimic some of the effects of venom, but not others.Eggs placed on live unstung hosts have significantly higher mortality during development, however successfully developing wasps from these hosts have similar lifetime fecundity to wasps from cold-killed or stung hosts. Therefore, although venom is beneficial, it is not required for wasp survival.While wasps developing on cold-killed versus stung hosts have similar fitness, multiple generations of rearing on cold-killed hosts results in significant fitness reductions of wasps.We conclude that the largest benefits of venom are induction of host developmental arrest and suppression of host response to larva (e.g. immune responses), although more subtle benefits may accrue across generations, or under stressful conditions.

14.
Curr Biol ; 27(13): 2007-2013.e8, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28648823

RESUMO

The classic model for the evolution of novel gene function is through gene duplication followed by evolution of a new function by one of the copies (neofunctionalization) [1, 2]. However, other modes have also been found, such as novel genes arising from non-coding DNA, chimeric fusions, and lateral gene transfers from other organisms [3-7]. Here we use the rapid turnover of venom genes in parasitoid wasps to study how new gene functions evolve. In contrast to the classic gene duplication model, we find that a common mode of acquisition of new venom genes in parasitoid wasps is co-option of single-copy genes from non-venom progenitors. Transcriptome and proteome sequencing reveal that recruitment and loss of venom genes occur primarily by rapid cis-regulatory expression evolution in the venom gland. Loss of venom genes is primarily due to downregulation of expression in the gland rather than gene death through coding sequence degradation. While the majority of venom genes have specialized expression in the venom gland, recent losses of venom function occur primarily among genes that show broader expression in development, suggesting that they can more readily switch functional roles. We propose that co-option of single-copy genes may be a common but relatively understudied mechanism of evolution for new gene functions, particularly under conditions of rapid evolutionary change.


Assuntos
Evolução Molecular , Expressão Gênica , Elementos Reguladores de Transcrição/genética , Venenos de Vespas/genética , Vespas/genética , Animais , Proteínas de Insetos/genética , Proteoma , Transcriptoma
15.
Mol Biol Evol ; 33(4): 1042-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26715630

RESUMO

Parasitoid wasps use venom to manipulate the immunity and metabolism of their host insects in a variety of ways to provide resources for their offspring. Yet, how genes are recruited and evolve to perform venom functions remain open questions. A recently recognized source of eukaryotic genome innovation is lateral gene transfer (LGT). Glycoside hydrolase family 19 (GH19) chitinases are widespread in bacteria, microsporidia, and plants where they are used in nutrient acquisition or defense, but have previously not been known in metazoans. In this study, a GH19 chitinase LGT is described from the unicellular microsporidia/Rozella clade into parasitoid wasps of the superfamily Chalcidoidea, where it has become recruited as a venom protein. The GH19 chitinase is present in 15 species of chalcidoid wasps representing four families, and phylogenetic analysis indicates that it was laterally transferred near or before the origin of Chalcidoidea (∼95 Ma). The GH19 chitinase gene is highly expressed in the venom gland of at least seven species, indicating a role in the complex host manipulations performed by parasitoid wasp venom. RNAi knockdown in the model parasitoid Nasonia vitripennis reveals that-following envenomation-the GH19 chitinase induces fly hosts to upregulate genes involved in an immune response to fungi. A second, independent LGT of GH19 chitinase from microsporidia into mosquitoes was also found, also supported by phylogenetic reconstructions. Besides these two LGT events, GH19 chitinase is not found in any other sequenced animal genome, or in any fungi outside the microsporidia/Rozella clade.


Assuntos
Quitinases/genética , Transferência Genética Horizontal/genética , Filogenia , Venenos de Vespas/genética , Animais , Genoma de Inseto , Interações Hospedeiro-Parasita/genética , Microsporídios/genética , Vespas/genética , Vespas/patogenicidade
16.
PLoS One ; 10(6): e0130745, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090817

RESUMO

A striking property of the mutualism between figs and their pollinating wasps is that wasps consistently oviposit in the inner flowers of the fig syconium, which develop into galls that house developing larvae. Wasps typically do not use the outer ring of flowers, which develop into seeds. To better understand differences between gall and seed flowers, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, we found significant differences in gene expression between gall- and seed flowers in receptive syconia prior to oviposition. In particular, transcripts assigned to flavonoids and carbohydrate metabolism were significantly up-regulated in gall flowers relative to seed flowers. In response to oviposition, gall flowers significantly up-regulated the expression of chalcone synthase, which previously has been connected to gall formation in other plants. We propose several genes encoding proteins with signal peptides or associations with venom of other Hymenoptera as candidate genes for gall initiation or growth. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides insight into a possible stability mechanism in the ancient fig-fig wasp association.


Assuntos
Ficus/metabolismo , Tumores de Planta/parasitologia , Transcriptoma , Animais , Análise por Conglomerados , Flores/metabolismo , Perfilação da Expressão Gênica , Larva/fisiologia , Oviposição/fisiologia , Polinização , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Sementes/metabolismo , Análise de Sequência de RNA , Simbiose , Regulação para Cima , Vespas/crescimento & desenvolvimento , Vespas/fisiologia
17.
Mol Ecol ; 23(23): 5918-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25319487

RESUMO

Parasitoid wasps are diverse and ecologically important insects that use venom to modify their host's metabolism for the benefit of the parasitoid's offspring. Thus, the effects of venom can be considered an 'extended phenotype' of the wasp. The model parasitoid wasp Nasonia vitripennis has approximately 100 venom proteins, 23 of which do not have sequence similarity to known proteins. Envenomation by N. vitripennis has previously been shown to induce developmental arrest, selective apoptosis and alterations in lipid metabolism in flesh fly hosts. However, the full effects of Nasonia venom are still largely unknown. In this study, we used high throughput RNA sequencing (RNA-Seq) to characterize global changes in Sarcophaga bullata (Diptera) gene expression in response to envenomation by N. vitripennis. Surprisingly, we show that Nasonia venom targets a small subset of S. bullata loci, with ~2% genes being differentially expressed in response to envenomation. Strong upregulation of enhancer of split complex genes provides a potential molecular mechanism that could explain the observed neural cell death and developmental arrest in envenomated hosts. Significant increases in antimicrobial peptides and their corresponding regulatory genes provide evidence that venom could be selectively activating certain immune responses of the hosts. Further, we found differential expression of genes in several metabolic pathways, including glycolysis and gluconeogenesis that may be responsible for the decrease in pyruvate levels found in envenomated hosts. The targeting of Nasonia venom effects to a specific and limited set of genes provides insight into the interaction between the ectoparasitoid wasp and its host.


Assuntos
Dípteros/genética , Regulação da Expressão Gênica , Venenos de Vespas , Animais , Dípteros/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Análise de Sequência de RNA , Transcriptoma
18.
Microb Ecol ; 64(4): 1073-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22729017

RESUMO

The ancient association of figs (Ficus spp.) and their pollinating wasps (fig wasps; Chalcidoidea, Hymenoptera) is one of the most interdependent plant-insect mutualisms known. In addition to pollinating wasps, a diverse community of organisms develops within the microcosm of the fig inflorescence and fruit. To better understand the multipartite context of the fig-fig wasp association, we used a culture-free approach to examine fungal communities associated with syconia of six species of Ficus and their pollinating wasps in lowland Panama. Diverse fungi were recovered from surface-sterilized flowers of all Ficus species, including gall- and seed flowers at four developmental stages. Fungal communities in syconia and on pollinating wasps were similar, dominated by diverse and previously unknown Saccharomycotina, and distinct from leaf- and stem endophyte communities in the same region. Before pollination, fungal communities were similar between gall- and seed flowers and among Ficus species. However, fungal communities differed significantly in flowers after pollination vs. before pollination, and between anciently diverged lineages of Ficus with active vs. passive pollination syndromes. Within groups of relatively closely related figs, there was little evidence for strict-sense host specificity between figs and particular fungal species. Instead, mixing of fungal communities among related figs, coupled with evidence for possible transfer by pollinating wasps, is consistent with recent suggestions of pollinator mixing within syconia. In turn, changes in fungal communities during fig development and ripening suggest an unexplored role of yeasts in the context of the fig-pollinator wasp mutualism.


Assuntos
Ecossistema , Ficus/crescimento & desenvolvimento , Ficus/microbiologia , Flores/microbiologia , Fungos/classificação , Fungos/genética , Sementes/microbiologia , Vespas/microbiologia , Animais , Fungos/crescimento & desenvolvimento , Dados de Sequência Molecular , Panamá , Filogenia , Polinização , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...