Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skeletal Radiol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880791

RESUMO

OBJECTIVE: To assess the accuracy of an artificial intelligence (AI) software (BoneMetrics, Gleamer) in performing automated measurements on weight-bearing forefoot and lateral foot radiographs. METHODS: Consecutive forefoot and lateral foot radiographs were retrospectively collected from three imaging institutions. Two senior musculoskeletal radiologists independently annotated key points to measure the hallux valgus, first-second metatarsal, and first-fifth metatarsal angles on forefoot radiographs and the talus-first metatarsal, medial arch, and calcaneus inclination angles on lateral foot radiographs. The ground truth was defined as the mean of their measurements. Statistical analysis included mean absolute error (MAE), bias assessed with Bland-Altman analysis between the ground truth and AI prediction, and intraclass coefficient (ICC) between the manual ratings. RESULTS: Eighty forefoot radiographs were included (53 ± 17 years, 50 women), and 26 were excluded. Ninety-seven lateral foot radiographs were included (51 ± 20 years, 46 women), and 21 were excluded. MAE for the hallux valgus, first-second metatarsal, and first-fifth metatarsal angles on forefoot radiographs were respectively 1.2° (95% CI [1; 1.4], bias = - 0.04°, ICC = 0.98), 0.7° (95% CI [0.6; 0.9], bias = - 0.19°, ICC = 0.91) and 0.9° (95% CI [0.7; 1.1], bias = 0.44°, ICC = 0.96). MAE for the talus-first, medial arch, and calcaneal inclination angles on the lateral foot radiographs were respectively 3.9° (95% CI [3.4; 4.5], bias = 0.61° ICC = 0.88), 1.5° (95% CI [1.2; 1.8], bias = - 0.18°, ICC = 0.95) and 1° (95% CI [0.8; 1.2], bias = 0.74°, ICC = 0.99). Bias and MAE between the ground truth and the AI prediction were low across all measurements. ICC between the two manual ratings was excellent, except for the talus-first metatarsal angle. CONCLUSION: AI demonstrated potential for accurate and automated measurements on weight-bearing forefoot and lateral foot radiographs.

2.
Diagn Interv Imaging ; 104(7-8): 330-336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37095034

RESUMO

PURPOSE: The purpose of this study was to compare the performance of an artificial intelligence (AI) solution to that of a senior general radiologist for bone age assessment. MATERIAL AND METHODS: Anteroposterior hand radiographs of eight boys and eight girls from each age interval between five and 17 year-old from four different radiology departments were retrospectively collected. Two board-certified pediatric radiologists with knowledge of the sex and chronological age of the patients independently estimated the Greulich and Pyle bone age to determine the standard of reference. A senior general radiologist not specialized in pediatric radiology (further referred to as "the reader") then determined the bone age with knowledge of the sex and chronological age. The results of the reader were then compared to those of the AI solution using mean absolute error (MAE) in age estimation. RESULTS: The study dataset included a total of 206 patients (102 boys of mean chronological age of 10.9 ± 3.7 [SD] years, 104 girls of mean chronological age of 11 ± 3.7 [SD] years). For both sexes, the AI algorithm showed a significantly lower MAE than the reader (P < 0.007). In boys, the MAE was 0.488 years (95% confidence interval [CI]: 0.28-0.44; r2 = 0.978) for the AI algorithm and 0.771 years (95% CI: 0.64-0.90; r2 = 0.94) for the reader. In girls, the MAE was 0.494 years (95% CI: 0.41-0.56; r2 = 0.973) for the AI algorithm and 0.673 years (95% CI: 0.54-0.81; r2 = 0.934) for the reader. CONCLUSION: The AI solution better estimates the Greulich and Pyle bone age than a general radiologist does.


Assuntos
Determinação da Idade pelo Esqueleto , Inteligência Artificial , Criança , Masculino , Feminino , Humanos , Adolescente , Pré-Escolar , Estudos Retrospectivos , Determinação da Idade pelo Esqueleto/métodos , Algoritmos
3.
Alcohol Clin Exp Res ; 46(8): 1384-1396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35791038

RESUMO

BACKGROUND: Individuals with alcohol use disorder (AUD) exhibit maladaptive responses of the hypothalamic-pituitary-adrenal (HPA) axis to stress, which has been linked to high rates of relapse to drinking among abstinent individuals. Corticotropin-releasing factor (CRF) parvocellular neuroendocrine cells (PNCs) within the paraventricular nucleus of the hypothalamus (PVN) are critical to stress-induced HPA axis activation. Here, we investigate sex differences in synaptic transmission and plasticity in PNCs following the application of the stress-associated neurotransmitter norepinephrine (NE) in a rat model of AUD. METHODS: Adult Sprague-Dawley rats were exposed to 40 days of chronic intermittent ethanol (CIE) vapor and 30 to 108 days of protracted withdrawal. We measured changes in holding current, evoked synaptic currents, and short-term glutamatergic plasticity (STP) in putative PNCs following the application of NE (10 µM) with and without the selective α1 adrenergic receptor (AR) antagonist prazosin (10 µM) or the α2AR antagonist atipamezole (10 µM). The experiments were performed using whole-cell patch clamp recordings in slices from CIE rats and air-exposed controls. RESULTS: NE application caused two distinct effects: a depolarizing, inward, postsynaptic current and a reduction in amplitude of an evoked glutamatergic excitatory postsynaptic current (eEPSC). Both effects were sex- and CIE-specific. Prazosin blocked the postsynaptic inward current, while atipamezole blocked the NE-mediated suppression of eEPSCs. Additionally, STP formation was facilitated following NE application only in stress-naïve males and this response was lost in stressed animals exposed to a 30-min restraint stress following CIE exposure. Furthermore, NE + prazosin restored STP formation in stressed CIE males. CONCLUSIONS: NE exerts excitatory and inhibitory effects on CRF PVN PNCs, and both effects are influenced by sex and CIE. Behavioral and hormonal responses to stress are influenced by STP formation within the PVN, which is lost following CIE and restored with the preapplication of prazosin. The selective blockade of α1AR may, therefore, ameliorate CIE-induced deficits in HPA responses to stress in a sex-specific manner.


Assuntos
Alcoolismo , Sistema Hipotálamo-Hipofisário , Animais , Hormônio Liberador da Corticotropina/metabolismo , Etanol/toxicidade , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Plasticidade Neuronal , Norepinefrina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Prazosina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa , Caracteres Sexuais
4.
Neurobiol Stress ; 15: 100335, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34036127

RESUMO

Post-traumatic stress disorder (PTSD) can develop after exposure to traumatic events and severely impacts the quality of life. PTSD is frequently comorbid with substance use disorders, with alcoholism being particularly common. However, not everyone who experiences trauma develops PTSD and the factors that render individuals susceptible or resilient to the effects of stress are unknown although gender appears to play an important role. Rodent models of stress exposure such as stress-enhanced fear learning (SEFL) recapitulate some aspects of PTSD symptomology, making them an invaluable tool for studying this disorder. This study examined whether exposure to a modified version of the SEFL procedure (4 footshocks instead of the standard 15 over 90 min) would reveal both susceptible and resilient subjects. Following stress exposure, distinct susceptible and resilient groups emerged that differed in fear learning and anxiety-related behavior as well as voluntary alcohol intake. Some aspects of stress susceptibility manifested differently in males compared to females, with susceptibility associated with increased alcohol intake in males and increased baseline anxiety in females.

5.
PLoS One ; 15(11): e0242276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33196678

RESUMO

Alcohol (ethanol, EtOH) consumption during pregnancy can result in fetal alcohol spectrum disorders (FASDs), which are characterized by prenatal and postnatal growth restriction and craniofacial dysmorphology. Recently, cell-derived extracellular vesicles, including exosomes and microvesicles containing several species of RNAs (exRNAs), have emerged as a mechanism of cell-to-cell communication. However, EtOH's effects on the biogenesis and function of non-coding exRNAs during fetal development have not been explored. Therefore, we studied the effects of maternal EtOH exposure on the composition of exosomal RNAs in the amniotic fluid (AF) using rat fetal alcohol exposure (FAE) model. Through RNA-Seq analysis we identified and verified AF exosomal miRNAs with differential expression levels specifically associated with maternal EtOH exposure. Uptake of purified FAE AF exosomes by rBMSCs resulted in significant alteration of molecular markers associated with osteogenic differentiation of rBMSCs. We also determined putative functional roles for AF exosomal miRNAs (miR-199a-3p, miR-214-3p and let-7g) that are dysregulated by FAE in osteogenic differentiation of rBMSCs. Our results demonstrate that FAE alters AF exosomal miRNAs and that exosomal transfer of dysregulated miRNAs has significant molecular effects on stem cell regulation and differentiation. Our results further suggest the usefulness of assessing molecular alterations in AF exRNAs to study the mechanisms of FAE teratogenesis that should be further investigated by using an in vivo model.


Assuntos
Líquido Amniótico/metabolismo , Diferenciação Celular/efeitos dos fármacos , Etanol/farmacologia , Exossomos/metabolismo , MicroRNAs/metabolismo , Líquido Amniótico/efeitos dos fármacos , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley
6.
PLoS One ; 15(6): e0234729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555668

RESUMO

BACKGROUND: Forced alcohol (ethanol, EtOH) exposure has been shown to cause significant impairments on reversal learning, a widely-used assay of cognitive flexibility, specifically on fully-predictive, deterministic versions of this task. However, previous studies have not adequately considered voluntary EtOH consumption and sex effects on probabilistic reversal learning. The present study aimed to fill this gap in the literature. METHODS: Male and female Long-Evans rats underwent either 10 weeks of voluntary intermittent 20% EtOH access or water only (H2O) access. Rats were then pretrained to initiate trials and learn stimulus-reward associations via touchscreen response, and subsequently required to select between two visual stimuli, rewarded with probability 0.70 or 0.30. In the final phase, reinforcement contingencies were reversed. RESULTS: We found significant sex differences on several EtOH-drinking variables, with females reaching a higher maximum EtOH consumption, exhibiting more high-drinking days, and escalating their EtOH at a quicker rate compared to males. During early abstinence, EtOH drinkers (and particularly EtOH-drinking females) made more initiation omissions and were slower to initiate trials than H2O drinking controls, especially during pretraining. A similar pattern in trial initiations was also observed in discrimination, but not in reversal learning. EtOH drinking rats were unaffected in their reward collection and stimulus response times, indicating intact motivation and motor responding. Although there were sex differences in discrimination and reversal phases, performance improved over time. We also observed sex-independent drinking group differences in win-stay and lose-shift strategies specific to the reversal phase. CONCLUSIONS: Females exhibit increased vulnerability to EtOH effects in early learning: there were sex-dependent EtOH effects on attentional measures during pretraining and discrimination phases. We also found sex-independent EtOH effects on exploration strategies during reversal. Future studies should aim to uncover the neural mechanisms for changes in attention and exploration in both acute and prolonged EtOH withdrawal.


Assuntos
Consumo de Bebidas Alcoólicas , Reversão de Aprendizagem/fisiologia , Animais , Comportamento de Escolha , Feminino , Masculino , Ratos , Ratos Long-Evans , Recompensa , Caracteres Sexuais
7.
Neuropharmacology ; 167: 107991, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059962

RESUMO

The chronic inability of alcoholics to effectively cope with relapse-inducing stressors has been linked to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and corticotropin-releasing factor (CRF) signaling. However, the cellular mechanisms responsible for this dysregulation are yet to be identified. After exposure of male Sprague Dawley rats to chronic intermittent ethanol (CIE; 5-6 g/kg orally for 35 doses over 50 days) or water, followed by 40-60 days of protracted withdrawal, we investigated CIE effects on glutamatergic synaptic transmission, stress-induced plasticity, CRF- and ethanol-induced NMDAR inhibition using electrophysiological recordings in parvocellular neurosecretory cells (PNCs) of the paraventricular nucleus. We also assessed CIE effects on hypothalamic mRNA expression of CRF-related genes using real-time polymerase chain reaction, and on HPA axis function by measuring stress-induced increases in plasma adrenocorticotropic hormone, corticosterone, and self-grooming. In control rats, ethanol-mediated inhibition of NMDARs was prevented by CRF1 receptor (CRFR1) blockade with antalarmin, while CRF/CRFR1-mediated NMDAR blockade was prevented by intracellularly-applied inhibitor of phosphatases PP1/PP2A, okadaic acid, but not the selective striatal-enriched tyrosine protein phosphatase inhibitor, TC-2153. CIE exposure increased GluN2B subunit-dependent NMDAR function of PNCs. This was associated with the loss of both ethanol- and CRF-mediated NMDAR inhibition, and loss of stress-induced short-term potentiation of glutamatergic synaptic inputs, which could be reversed by intracellular blockade of NMDARs with MK801. CIE exposure also blunted the hormonal and self-grooming behavioral responses to repeated restraint stress. These findings suggest a cellular mechanism whereby chronic alcohol dysregulates the hormonal and behavioral responses to repetitive stressors by increasing NMDAR function and decreasing CRFR1 function.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Etanol/administração & dosagem , Etanol/toxicidade , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Alcoolismo/metabolismo , Alcoolismo/psicologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
8.
Front Neurosci ; 14: 599646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424537

RESUMO

Alcohol use disorder (AUD) is a chronic relapsing condition characterized by compulsive alcohol-seeking behaviors, with serious detrimental health consequences. Despite high prevalence and societal burden, available approved medications to treat AUD are limited in number and efficacy, highlighting a critical need for more and novel pharmacotherapies. Glucagon-like peptide-1 (GLP-1) is a gut hormone and neuropeptide involved in the regulation of food intake and glucose metabolism via GLP-1 receptors (GLP-1Rs). GLP-1 analogs are approved for clinical use for diabetes and obesity. Recently, the GLP-1 system has been shown to play a role in the neurobiology of addictive behaviors, including alcohol seeking and consumption. Here we investigated the effects of different pharmacological manipulations of the GLP-1 system on escalated alcohol intake and preference in male Wistar rats exposed to intermittent access 2-bottle choice of 10% ethanol or water. Administration of AR231453 and APD668, two different agonists of G-protein receptor 119, whose activation increases GLP-1 release from intestinal L-cells, did not affect voluntary ethanol intake. By contrast, injections of either liraglutide or semaglutide, two long-acting GLP-1 analogs, potently decreased ethanol intake. These effects, however, were transient, lasting no longer than 48 h. Semaglutide, but not liraglutide, also reduced ethanol preference on the day of injection. As expected, both analogs induced a reduction in body weight. Co-administration of exendin 9-39, a GLP-1R antagonist, did not prevent liraglutide- or semaglutide-induced effects in this study. Injection of exendin 9-39 alone, or blockade of dipeptidyl peptidase-4, an enzyme responsible for GLP-1 degradation, via injection of sitagliptin, did not affect ethanol intake or preference. Our findings suggest that among medications targeting the GLP-1 system, GLP-1 analogs may represent novel and promising pharmacological tools for AUD treatment.

9.
Neuropharmacology ; 139: 85-97, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981335

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and dose-limiting side effect of cancer treatment that affects millions of cancer survivors throughout the world and current treatment options are extremely limited by their side effects. Cannabinoids are highly effective in suppressing pain symptoms of chemotherapy-induced and other peripheral neuropathies but their widespread use is limited by central nervous system (CNS)-mediated side effects. Here, we tested one compound from a series of recently developed synthetic peripherally restricted cannabinoids (PRCBs) in a rat model of cisplatin-induced peripheral neuropathy. Results show that local or systemic administration of 4-{2-[-(1E)-1[(4-propylnaphthalen-1-yl)methylidene]-1H-inden-3-yl]ethyl}morpholine (PrNMI) dose-dependently suppressed CIPN mechanical and cold allodynia. Orally administered PrNMI also dose-dependently suppressed CIPN allodynia symptoms in both male and female rats without any CNS side effects. Co-administration with selective cannabinoid receptor subtype blockers revealed that PrNMI's anti-allodynic effects are mediated by CB1 receptor (CB1R) activation. Expression of CB2Rs was reduced in dorsal root ganglia from CIPN rats, whereas expression of CB1Rs and various endocannabinoid synthesizing and metabolizing enzymes was unaffected. Daily PrNMI treatment of CIPN rats for two weeks showed a lack of appreciable tolerance to PrNMI's anti-allodynic effects. In an operant task which reflects cerebral processing of pain, PrNMI also dose-dependently suppressed CIPN pain behaviors. Our results demonstrate that PRCBs exemplified by PrNMI may represent a viable option for the treatment of CIPN pain symptoms.


Assuntos
Analgésicos não Narcóticos/administração & dosagem , Antineoplásicos/efeitos adversos , Moduladores de Receptores de Canabinoides/administração & dosagem , Canabinoides/administração & dosagem , Cisplatino/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Animais , Temperatura Baixa , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Tato
10.
Extremophiles ; 19(6): 1099-107, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26376634

RESUMO

Halobacterium salinarum is an extreme halophile archaeon with an absolute requirement for a multimolar salt environment. It accumulates molar concentrations of KCl in the cytosol to counterbalance the external osmotic pressure imposed by the molar NaCl. As a consequence, cytosolic proteins are permanently exposed to low water activity and highly ionic conditions. In non-adapted systems, such conditions would promote protein aggregation, precipitation, and denaturation. In contrast, in vitro studies showed that proteins from extreme halophilic cells are themselves obligate halophiles. In this paper, adaptation via dynamics to low-salt stress in H. salinarum cells was measured by neutron scattering experiments coupled with microbiological characterization. The molecular dynamic properties of a proteome represent a good indicator for environmental adaptation and the neutron/microbiology approach has been shown to be well tailored to characterize these modifications. In their natural setting, halophilic organisms often have to face important variations in environmental salt concentration. The results showed deleterious effects already occur in the H. salinarum proteome, even when the external salt concentration is still relatively high, suggesting the onset of survival mechanisms quite early when the environmental salt concentration decreases.


Assuntos
Halobacterium salinarum/genética , Proteoma/metabolismo , Tolerância ao Sal , Estresse Fisiológico , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Halobacterium salinarum/metabolismo , Potássio/metabolismo , Proteoma/genética
11.
Neurochem Res ; 39(6): 1162-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24710789

RESUMO

Acute and chronic ethanol (EtOH) administration is known to affect function, surface expression, and subunit composition of γ-aminobutyric acid (A) receptors (GABAARs) in different parts of the brain, which is believed to play a major role in alcohol dependence and withdrawal symptoms. The basolateral amygdala (BLA) participates in anxiety-like behaviors including those induced by alcohol withdrawal. In the present study we assessed the changes in cell surface levels of select GABAAR subunits in the BLA of a rat model of alcohol dependence induced by chronic intermittent EtOH (CIE) treatment and long-term (>40 days) withdrawal and investigated the time-course of such changes after a single dose of EtOH (5 g/kg, gavage). We found an early decrease in surface expression of α4 and δ subunits at 1 h following single dose EtOH treatment. At 48 h post-EtOH and after CIE treatment there was an increase in α4 and γ2, while α1, α2, and δ surface expression were decreased. To relate functional changes in GABAARs to changes in their subunit composition we analyzed miniature inhibitory postsynaptic currents (mIPSCs) and the picrotoxin-sensitive tonic current (Itonic) 48 h after EtOH intoxication. The Itonic magnitude and most of the mIPSC kinetic parameters (except faster mIPSC decay) were unchanged at 48 h post-EtOH. At the same time, Itonic potentiation by acute EtOH was greatly reduced, whereas mIPSCs became significantly more sensitive to potentiation by acute EtOH. These results suggest that EtOH intoxication-induced GABAAR plasticity in the BLA might contribute to the diminished sedative/hypnotic and maintained anxiolytic effectiveness of EtOH.


Assuntos
Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Etanol/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
12.
J Neurophysiol ; 112(1): 51-60, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24717351

RESUMO

The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Alterations in glutamatergic and GABAergic signaling were recently demonstrated in the NAcc of rats after chronic intermittent ethanol (CIE) treatment, a model of alcohol dependence. Here we studied dopamine (DA) modulation of GABAergic signaling and how this modulation might be altered by CIE treatment. We show that the tonic current (I(tonic)) mediated by extrasynaptic γ-aminobutyric acid type A receptors (GABA(A)Rs) of medium spiny neurons (MSNs) in the NAcc core is differentially modulated by DA at concentrations in the range of those measured in vivo (0.01-1 µM), without affecting the postsynaptic kinetics of miniature inhibitory postsynaptic currents (mIPSCs). Use of selective D1 receptor (D1R) and D2 receptor (D2R) ligands revealed that I(tonic) potentiation by DA (10 nM) is mediated by D1Rs while I(tonic) depression by DA (0.03-1 µM) is mediated by D2Rs in the same MSNs. Addition of guanosine 5'-O-(2-thiodiphosphate) (GDPßS) to the recording pipettes eliminated I(tonic) decrease by the selective D2R agonist quinpirole (5 nM), leaving intact the quinpirole effect on mIPSC frequency. Recordings from CIE and vehicle control (CIV) MSNs during application of D1R agonist (SKF 38393, 100 nM) or D2R agonist (quinpirole, 2 nM) revealed that SKF 38393 potentiated I(tonic) to the same extent, while quinpirole reduced I(tonic) to a similar extent, in both groups of rats. Our data suggest that the selective modulatory effects of DA on I(tonic) are unaltered by CIE treatment and withdrawal.


Assuntos
Alcoolismo/metabolismo , Agonistas de Dopamina/farmacologia , Dopamina/farmacologia , Potenciais Pós-Sinápticos Inibidores , Potenciais Pós-Sinápticos em Miniatura , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Alcoolismo/fisiopatologia , Animais , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiopatologia , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Receptores de GABA-A/metabolismo , Tionucleotídeos/farmacologia
13.
J Neurophysiol ; 112(1): 39-50, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24694935

RESUMO

Chronic alcohol exposure-induced changes in reinforcement mechanisms and motivational state are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Here we describe the long-lasting alterations of γ-aminobutyric acid type A receptors (GABA(A)Rs) of medium spiny neurons (MSNs) in the NAcc after chronic intermittent ethanol (CIE) treatment, a rat model of alcohol dependence. CIE treatment and withdrawal (>40 days) produced decreases in the ethanol and Ro15-4513 potentiation of extrasynaptic GABA(A)Rs, which mediate the picrotoxin-sensitive tonic current (I(tonic)), while potentiation of synaptic receptors, which give rise to miniature inhibitory postsynaptic currents (mIPSCs), was increased. Diazepam sensitivity of both I(tonic) and mIPSCs was decreased by CIE treatment. The average magnitude of I(tonic) was unchanged, but mIPSC amplitude and frequency decreased and mIPSC rise time increased after CIE treatment. Rise-time histograms revealed decreased frequency of fast-rising mIPSCs after CIE treatment, consistent with possible decreases in somatic GABAergic synapses in MSNs from CIE rats. However, unbiased stereological analysis of NeuN-stained NAcc neurons did not detect any decreases in NAcc volume, neuronal numbers, or neuronal cell body volume. Western blot analysis of surface subunit levels revealed selective decreases in α1 and δ and increases in α4, α5, and γ2 GABA(A)R subunits after CIE treatment and withdrawal. Similar, but reversible, alterations occurred after a single ethanol dose (5 g/kg). These data reveal CIE-induced long-lasting neuroadaptations in the NAcc GABAergic neurotransmission.


Assuntos
Alcoolismo/metabolismo , Potenciais Pós-Sinápticos Inibidores , Potenciais Pós-Sinápticos em Miniatura , Plasticidade Neuronal , Núcleo Accumbens/metabolismo , Receptores de GABA-A/metabolismo , Alcoolismo/fisiopatologia , Animais , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Masculino , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiopatologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética
14.
J Biol Chem ; 288(31): 22542-54, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23696647

RESUMO

Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo.


Assuntos
Peptídeo Hidrolases/metabolismo , Pyrococcus horikoshii/enzimologia , Clonagem Molecular , Dimerização , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Conformação Proteica
15.
J R Soc Interface ; 10(82): 20130003, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23446053

RESUMO

In vivo molecular dynamics in Halobacterium salinarum cells under stress conditions was measured by neutron scattering experiments coupled with microbiological characterization. Molecular dynamics alterations were detected with respect to unstressed cells, reflecting a softening of protein structures consistent with denaturation. The experiments indicated that the neutron scattering method provides a promising tool to study molecular dynamics modifications in the proteome of living cells induced by factors altering protein folds.


Assuntos
Proteínas Arqueais/metabolismo , Halobacterium salinarum/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteoma/metabolismo , Halobacterium salinarum/citologia , Nêutrons , Desnaturação Proteica , Espalhamento de Radiação
16.
Front Neurosci ; 6: 86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701402

RESUMO

Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE) treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs) in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs), and larger fast afterhyperpolarizations (fAHPs) than MSNs from vehicle-treated animals, all suggestive of increases in K(+)-channel conductances. Significant increases in the Cs(+)-sensitive inwardly rectifying K(+)-current accounted for the increased input resistance, while increases in the A-type K(+)-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.

18.
Alcohol ; 46(4): 317-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22445807

RESUMO

Chronic and excessive alcohol drinking lead to alcohol dependence and loss of control over alcohol consumption, with serious detrimental health consequences. Chronic alcohol exposure followed by protracted withdrawal causes profound alterations in the brain reward system that leads to marked changes in reinforcement mechanisms and motivational state. These long-lasting neuroadaptations are thought to contribute to the development of cravings and relapse. The nucleus accumbens (NAcc), a central component of the brain reward system, plays a critical role in alcohol-induced neuroadaptive changes underlying alcohol-seeking behaviors. Here we review the findings that chronic alcohol exposure produces long-lasting neuroadaptive changes in various ion channels that govern intrinsic membrane properties and neuronal excitability, as well as excitatory and inhibitory synaptic transmission in the NAcc that underlie alcohol-seeking behavior during protracted withdrawal.


Assuntos
Etanol/farmacologia , Canais Iônicos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Humanos , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Transmissão Sináptica/fisiologia
19.
J Physiol ; 589(17): 4259-70, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21727221

RESUMO

Glutamatergic synaptic inputs onto parvocellular neurosecretory cells (PNCs) in the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic-pituitary-adrenal (HPA) axis responses to stress and undergo stress-dependent changes in their capacity to transmit information. In spite of their pivotal role in regulating PNCs, relatively little is known about the fundamental rules that govern transmission at these synapses. Furthermore, since salient information in the nervous system is often transmitted in bursts, it is also important to understand the short-term dynamics of glutamate transmission under basal conditions. To characterize these properties, we obtained whole-cell patch clamp recordings from PNCs in brain slices from postnatal day 21-35 male Sprague-Dawley rats and examined EPSCs. EPSCs were elicited by electrically stimulating glutamatergic afferents along the periventricular aspect. In response to a paired-pulse stimulation protocol, EPSCs generally displayed a robust short-term depression that recovered within 5 s. Similarly, trains of synaptic stimuli (5-50 Hz) resulted in a frequency-dependent depression until a near steady state was achieved. Application of inhibitors of AMPA receptor (AMPAR) desensitization or the low-affinity, competitive AMPAR antagonist failed to affect the depression due to paired-pulse and trains of synaptic stimulation indicating that this use-dependent short-term synaptic depression has a presynaptic locus of expression. We used cumulative amplitude profiles during trains of stimulation and variance-mean analysis to estimate synaptic parameters. Finally, we report that these properties contribute to hamper the efficiency with which high frequency synaptic inputs generate spikes in PNCs, indicating that these synapses operate as effective low-pass filters in basal conditions.


Assuntos
Ácido Glutâmico , Núcleo Hipotalâmico Paraventricular , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Hipotálamo , Técnicas In Vitro , Células Neuroendócrinas , Ratos Sprague-Dawley , Sinapses
20.
Nat Neurosci ; 13(10): 1257-64, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20818385

RESUMO

Exposure to a stressor sensitizes or 'primes' the hypothalamic-pituitary-adrenal axis to a subsequent novel stressor. The synaptic mechanisms underlying this priming, however, are not known. We found that exposing a rat to a single stressor primed glutamate synapses in the paraventricular nucleus of the hypothalamus and allowed them to undergo a short-term potentiation (STP) following a burst of high-frequency afferent activity. This transient potentiation requires a corticotrophin-releasing hormone-dependent depression of postsynaptic NMDA receptors (NMDARs). The long-term depression of NMDAR function after stress prevented the vesicular release of an inhibitory retrograde messenger that, in control conditions, arrests STP. Following stress, STP manifested as an increase in the release probability of glutamate that was sufficient to induce multivesicular release. Our findings indicate that the priming of synapses to express STP is a synaptic correlate to stress-induced behavioral and neuroendocrine sensitization.


Assuntos
Ácido Glutâmico/metabolismo , Plasticidade Neuronal/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Estresse Fisiológico/fisiologia , Sinapses/fisiologia , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Biofísica/métodos , Quelantes/farmacologia , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Maleato de Dizocilpina/farmacologia , Interações Medicamentosas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Técnicas In Vitro , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Técnicas de Patch-Clamp/métodos , Pirimidinas/farmacologia , Pirróis/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia , Sinapses/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...