Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17266, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451943

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

2.
Sci Rep ; 8(1): 14926, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297841

RESUMO

The spread of antimicrobial resistance stimulates discovery strategies that place emphasis on mechanisms circumventing the drawbacks of traditional antibiotics and on agents that hit multiple targets. Host defense peptides (HDPs) are promising candidates in this regard. Here we demonstrate that a given HDP sequence intrinsically encodes for tuneable mechanisms of membrane disruption. Using an archetypal HDP (cecropin B) we show that subtle structural alterations convert antimicrobial mechanisms from native carpet-like scenarios to poration and non-porating membrane exfoliation. Such distinct mechanisms, studied using low- and high-resolution spectroscopy, nanoscale imaging and molecular dynamics simulations, all maintain strong antimicrobial effects, albeit with diminished activity against pathogens resistant to HDPs. The strategy offers an effective search paradigm for the sequence probing of discrete antimicrobial mechanisms within a single HDP.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Bicamadas Lipídicas/metabolismo , Mariposas/química , Sequência de Aminoácidos , Animais , Infecções Bacterianas/tratamento farmacológico , Descoberta de Drogas , Farmacorresistência Bacteriana , Humanos , Modelos Moleculares , Fosfolipídeos/metabolismo
3.
Chem Sci ; 8(2): 1105-1115, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451250

RESUMO

The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.

4.
Nanotechnology ; 26(37): 375201, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26302818

RESUMO

We present the first realization of a monolithically integrated piezoelectronic transistor (PET), a new transduction-based computer switch which could potentially operate conventional computer logic at 1/50 the power requirements of current Si-based transistors (Chen 2014 Proc. IEEE ICICDT pp 1-4; Mamaluy et al 2014 Proc. IWCE pp 1-2). In PET operation, an input gate voltage expands a piezoelectric element (PE), transducing the input into a pressure pulse which compresses a piezoresistive element (PR). The PR resistance goes down, transducing the signal back to voltage and turning the switch 'on'. This transduction physics, in principle, allows fast, low-voltage operation. In this work, we address the processing challenges of integrating chemically incompatible PR and PE materials together within a surrounding cage against which the PR can be compressed. This proof-of-concept demonstration of a fully integrated, stand-alone PET device is a key step in the development path toward a fast, low-power very large scale integration technology.

5.
Proc Natl Acad Sci U S A ; 112(20): 6341-6, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941394

RESUMO

Water challenges our fundamental understanding of emergent materials properties from a molecular perspective. It exhibits a uniquely rich phenomenology including dramatic variations in behavior over the wide temperature range of the liquid into water's crystalline phases and amorphous states. We show that many-body responses arising from water's electronic structure are essential mechanisms harnessed by the molecule to encode for the distinguishing features of its condensed states. We treat the complete set of these many-body responses nonperturbatively within a coarse-grained electronic structure derived exclusively from single-molecule properties. Such a "strong coupling" approach generates interaction terms of all symmetries to all orders, thereby enabling unique transferability to diverse local environments such as those encountered along the coexistence curve. The symmetries of local motifs that can potentially emerge are not known a priori. Consequently, electronic responses unfiltered by artificial truncation are then required to embody the terms that tip the balance to the correct set of structures. Therefore, our fully responsive molecular model produces, a simple, accurate, and intuitive picture of water's complexity and its molecular origin, predicting water's signature physical properties from ice, through liquid-vapor coexistence, to the critical point.

6.
Phys Rev Lett ; 114(10): 107001, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815959

RESUMO

In high temperature superconductors, although some phenomena such as the Mott transition (MT) at low doping are clearly driven by electron correlations, recent experimental data imply that anharmonic oxygen degrees of freedom-characteristic of perovskite materials-are playing a significant role. A key test of the role of anharmonic oxygen is to reproduce the complex cuprate phase diagram from a simple model. Here, we show that a field theory based on nonlinear coupling to anharmonic oxygens, parametrized from ab initio calculations, quantitatively reproduces the cuprate phase diagram for dopings above the MT. Pairing is mediated by renormalized oxygen vibrations transmuted into excitations of the pseudogap. The observed strong dependence of gap to transition temperature ratio on Tc also emerges from this field theory. This work suggests that including vibrational degrees of freedom is key to developing a complete understanding of the cuprates.

7.
Phys Chem Chem Phys ; 17(14): 8660-9, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25715668

RESUMO

We determine the molecular structure and orientation at the liquid-vapour interface of water using an electronically coarse grained model constructed to include all long-range electronic responses within Gaussian statistics. The model, fit to the properties of the isolated monomer and dimer, is sufficiently responsive to generate the temperature dependence of the surface tension from ambient conditions to the critical point. Acceptor hydrogen bonds are shown to be preferentially truncated at the free surface under ambient conditions and a related asymmetry in hydrogen bonding preference is identified in bulk water. We speculate that this bonding asymmetry in bulk water is the microscopic origin of the observed surface structure.

8.
Proc Natl Acad Sci U S A ; 110(22): 8918-23, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671080

RESUMO

Antimicrobial peptides are postulated to disrupt microbial phospholipid membranes. The prevailing molecular model is based on the formation of stable or transient pores although the direct observation of the fundamental processes is lacking. By combining rational peptide design with topographical (atomic force microscopy) and chemical (nanoscale secondary ion mass spectrometry) imaging on the same samples, we show that pores formed by antimicrobial peptides in supported lipid bilayers are not necessarily limited to a particular diameter, nor they are transient, but can expand laterally at the nano-to-micrometer scale to the point of complete membrane disintegration. The results offer a mechanistic basis for membrane poration as a generic physicochemical process of cooperative and continuous peptide recruitment in the available phospholipid matrix.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bicamadas Lipídicas/química , Nanotecnologia/métodos , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfolipídeos/química , Engenharia de Proteínas , Espectrometria de Massa de Íon Secundário
9.
J Chem Theory Comput ; 9(5): 2398-403, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26583730

RESUMO

Graphene nanomeshes (GNMs) formed by the creation of pore superlattices in graphene are a possible route to graphene-based electronics due to their semiconducting properties, including the emergence of fractional electronvolt band gaps. The utility of GNMs would be markedly increased if a scheme to stably and controllably dope them was developed. In this work, a chemically motivated approach to GNM doping based on selective pore-perimeter passivation and subsequent ion chelation is proposed. It is shown by first-principles calculations that ion chelation leads to stable doping of the passivated GNMs-both n- and p-doping are achieved within a rigid-band picture. Such chelated or "crown" GNM structures are stable, high mobility semiconducting materials possessing intrinsic doping-concentration control; these can serve as building blocks for edge-free graphene nanoelectronics including GNM-based complementary metal oxide semiconductor (CMOS)-type logic switches.

10.
Adv Mater ; 24(27): 3672-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22689473

RESUMO

Field effect transistors are reaching the limits imposed by the scaling of materials and the electrostatic gating physics underlying the device. In this Communication, a new type of switch based on different physics, which combines known piezoelectric and piezoresistive materials, is described and is shown by theory and simulation to achieve gigahertz digital switching at low voltage (0.1 V).


Assuntos
Nanotecnologia , Transistores Eletrônicos , Metais/química , Óxidos/química , Eletricidade Estática
11.
Nano Lett ; 11(9): 3629-33, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21834553

RESUMO

The ballistic conductance through junctions between multilayer graphene films and several different metals is studied using ab initio calculations within the local density approximation. The system consists of films of up to four graphene layers (Bernal stacking) between metallic electrodes, assuming reasonable metal-graphene epitaxial relationships. For some metals, the conductance decays exponentially with increasing number of layers, while for others the conductance saturates with film thickness. This difference in asymptotic behavior stems from the crystal momentum (mis)match between the bulk Fermi-level states in the electrode and those in the film. In contrast, for sufficiently thin films the bonding between the metal and the adjacent graphene layer dominates, giving a metal dependence for graphene similar to that seen experimentally for single-wall carbon nanotubes. Among the metals considered here, we find Pd to be the best for electrodes to films with up to 4 graphene layers.

12.
J Biol Chem ; 286(28): 25016-26, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592960

RESUMO

Human chorionic gonadotropin (hCG) is an important biomarker in pregnancy and oncology, where it is routinely detected and quantified by specific immunoassays. Intelligent epitope selection is essential to achieving the required assay performance. We present binding affinity measurements demonstrating that a typical ß3-loop-specific monoclonal antibody (8G5) is highly selective in competitive immunoassays and distinguishes between hCGß(66-80) and the closely related luteinizing hormone (LH) fragment LHß(86-100), which differ only by a single amino acid residue. A combination of optical spectroscopic measurements and atomistic computer simulations on these free peptides reveals differences in turn type stabilized by specific hydrogen bonding motifs. We propose that these structural differences are the basis for the observed selectivity in the full protein.


Assuntos
Anticorpos Monoclonais Murinos/química , Gonadotropina Coriônica Humana Subunidade beta/química , Simulação por Computador , Epitopos/química , Peptídeos/química , Animais , Anticorpos Monoclonais Murinos/genética , Gonadotropina Coriônica Humana Subunidade beta/genética , Epitopos/genética , Feminino , Humanos , Imunoensaio , Camundongos , Peptídeos/genética , Gravidez , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
13.
Phys Rev Lett ; 106(11): 116804, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469888

RESUMO

Electrostatic screening in multilayer graphene is highly nonlinear due to the vanishing density of states at the Fermi level. Using a discrete model we study the charge screening normal to the layers. Our model shows a strong charge and temperature dependence and has a simple continuum limit at T=0 for undoped systems. Doped systems can exhibit more complex behavior due to minority-carrier screening. Most importantly we find that the screening length can vary more than an order of magnitude depending on the experimental conditions, reconciling the large range of screening lengths reported in previous experiments. This has important consequences for technological applications of multilayer graphene used in electrodes or transistor channels.

14.
ACS Nano ; 5(4): 3096-103, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21391615

RESUMO

Graphene forms an important two-dimensional (2D) material class that displays both a high electronic conductivity and optical transparency when doped. Yet, the microscopic origin of the doping mechanism in single sheet or bulk intercalated systems remains unclear. Using large-scale ab initio simulations, we show the graphene surface acts as a catalytic reducing/oxidizing agent, driving the chemical disproportionation of adsorbed dopant layers into charge-transfer complexes which inject majority carriers into the 2D carbon lattice. As pertinent examples, we focus on the molecular SbCl(5) and HNO(3) intercalates, and the solid compound AlCl(3). Identifying the microscopic mechanism for the catalytic action of graphene is important, given the availability of large area graphene sheets, to spur research into new redox reactions for use in science and technology.

15.
Phys Chem Chem Phys ; 13(1): 127-35, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21057682

RESUMO

The flexibility of the Membrane Proximal Region (MPR) of the HIV-1 gp41 envelope glycoprotein is believed to be relevant to its biological function. Its conformational bias is potentially influenced by the various environmental conditions experienced during viral fusion. Using a combination of Circular Dichroism and Molecular Dynamics simulations, we show that a very short MPR fragment gp41(659-671) spanning the 2F5 monoclonal antibody epitope, exhibits autonomous helical folding in the presence of membrane mimicking SDS micelles and the extent of which can be tuned by pH variation: Specifically, the peptide shows no defined fold type at basic pH but is helical at physiological and lower pH environments. By contrast, no such control of helical folding by pH is observed in aqueous solutions in the absence of SDS. Instead, the experimental data imply that unfolded structures persist and that pH has negligible influence on conformational bias. We also explore the pronounced sensitivity to standard empirical potentials and conclude that AMBER-ff03 provides a reasonably accurate description of the solution state structure and is therefore a good choice for future exploration of membrane-induced phenomena.


Assuntos
Proteína gp41 do Envelope de HIV/química , Membranas Artificiais , Dobramento de Proteína , Anticorpos Monoclonais/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Micelas , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
16.
Langmuir ; 26(24): 19191-8, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090688

RESUMO

The DNA-Transistor is a device designed to control the translocation of single-stranded DNA through a solid-state nanopore. Functionality of the device is enabled by three electrodes exposed to the DNA-containing electrolyte solution within the pore and the application of a dynamic electrostatic potential well between the electrodes to temporarily trap a DNA molecule. Optimizing the surface chemistry and electrochemical behavior of the device is a necessary (but by no means sufficient) step toward the development of a functional device. In particular, effects to be eliminated are (i) electrochemically induced surface alteration through corrosion or reduction of the electrode surface and (ii) formation of hydrogen or oxygen bubbles inside the pore through water decomposition. Even though our motivation is to solve problems encountered in DNA transistor technology, in this paper we report on generic surface chemistry results. We investigated a variety of electrode-electrolyte-solvent systems with respect to their capability of suppressing water decomposition and maintaining surface integrity. We employed cyclic voltammetry and long-term amperometry as electrochemical test schemes, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning, as well as transmission electron microscopy as analytical tools. Characterized electrode materials include thin films of Ru, Pt, nonstoichiometric TiN, and nonstoichiometric TiN carrying a custom-developed titanium oxide layer, as well as custom-oxidized nonstoichiometric TiN coated with a monolayer of hexadecylphosphonic acid (HDPA). We used distilled water as well as aqueous solutions of poly(ethylene glycol) (PEG-300) and glycerol as solvents. One millimolar KCl was employed as electrolyte in all solutions. Our results show that the HDPA-coated custom-developed titanium oxide layer effectively passivates the underlying TiN layer, eliminating any surface alterations through corrosion or reduction within a voltage window from -2 V to +2 V. Furthermore, we demonstrated that, by coating the custom-oxidized TiN samples with HDPA and increasing the concentration of PEG-300 or glycerol in aqueous 1 mM KCl solutions, water decomposition was suppressed within the same voltage window. Water dissociation was not detected when combining custom-oxidized HDPA-coated TiN electrodes with an aqueous 1 mM KCl-glycerol solution at a glycerol concentration of at least 90%. These results are applicable to any system that requires nanoelectrodes placed in aqueous solution at voltages that can activate electrochemical processes.


Assuntos
DNA de Cadeia Simples/análise , DNA de Cadeia Simples/química , Transistores Eletrônicos , Corrosão , Eletroquímica , Eletrodos , Eletrólitos/química , Simulação de Dinâmica Molecular , Nanotecnologia , Conformação de Ácido Nucleico , Solventes/química , Propriedades de Superfície , Água/química
17.
ACS Nano ; 4(7): 3839-44, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20695514

RESUMO

Graphene is considered a leading candidate to replace conventional transparent conducting electrodes because of its high transparency and exceptional transport properties. The effect of chemical p-type doping on graphene stacks was studied in order to reduce the sheet resistance of graphene films to values approaching those of conventional transparent conducting oxides. In this report, we show that large-area, stacked graphene films are effectively p-doped with nitric acid. The doping decreases the sheet resistance by a factor of 3, yielding films comprising eight stacked layers with a sheet resistance of 90 Omega/(square) at a transmittance of 80%. The films were doped either after all of the layers were stacked (last-layer-doped) or after each layer was added (interlayer-doped). A theoretical model that accurately describes the stacked graphene film system as a resistor network was developed. The model defines a characteristic transfer length where all the channels in the graphene films actively contribute to electrical transport. The experimental data shows a linear increase in conductivity with the number of graphene layers, indicating that each layer provides an additional transport channel, in good agreement with the theoretical model.

18.
Future Med Chem ; 2(11): 1633-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21428835

RESUMO

Traditional approaches of medicinal chemistry focus on finding novel structures possessing desired biological properties, or on relating chemical details to a particular biological function. Here the aim is to hit the therapeutic target of interest rather than to understand and exploit its origin. Consequently, molecular mechanisms underlying the disease are of much lesser concern, with intuitive designs continuing to be most successful. Physical sciences can offer alternative ways of tackling the problem by establishing structural continuums between different time and length scales spanning physical phenomena of life processes and their disorders. This can be achieved by the use of approximated physical models providing a rationale for interconversions between different but related scales, which can further be extended with chemical details obtained from complementary experimental data.


Assuntos
Biofísica/métodos , Disciplinas das Ciências Naturais/métodos , Pesquisa Translacional Biomédica , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Medicina , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Internalização do Vírus
19.
Proc Natl Acad Sci U S A ; 106(27): 10907-11, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549858

RESUMO

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin. Correlations between conductivity, total system energy, and local atomic coordination revealed by experiments and long time ab initio simulations show that the structural reorganization into the amorphous state is driven by opening of an energy gap in the electronic density of states. The electronic driving force behind the phase change has the potential to change the interconversion paradigm in this material class.

20.
Biophys J ; 95(11): 5014-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18790850

RESUMO

Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data.


Assuntos
Modelos Moleculares , Prolina/química , Água/química , Simulação por Computador , Maleabilidade , Teoria Quântica , Reprodutibilidade dos Testes , Software , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...