Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38633777

RESUMO

Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive Behavior Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways. Changes in metabolite concentrations related to each treatment arm were identified and compared to define metabolic signatures of exposure. In addition, association between metabolites and depressive symptom severity (assessed with the 17-item Hamilton Rating Scale for Depression [HRSD17]) and anxiety symptom severity (assessed with the 14-item Hamilton Rating Scale for Anxiety [HRSA14]) were evaluated, both at baseline and after 12 weeks of treatment. Significant reductions in serum serotonin level and increases in tryptophan-derived indoles that are gut bacterially derived were observed with escitalopram and duloxetine arms but not in CBT arm. These include indole-3-propionic acid (I3PA), indole-3-lactic acid (I3LA) and Indoxyl sulfate (IS), a uremic toxin. Purine-related metabolites were decreased across all arms. Different metabolites correlated with improved symptoms in the different treatment arms revealing potentially different mechanisms between response to antidepressant medications and to CBT.

2.
Commun Biol ; 6(1): 756, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474677

RESUMO

Aging alters the amplitude and phase of centrally regulated circadian rhythms. Here we evaluate whether peripheral circadian rhythmicity in the plasma lipidome is altered by aging through retrospective lipidomics analysis on plasma samples collected in 24 healthy individuals (9 females; mean ± SD age: 40.9 ± 18.2 years) including 12 younger (4 females, 23.5 ± 3.9 years) and 12 middle-aged older, (5 females, 58.3 ± 4.2 years) individuals every 3 h throughout a 27-h constant routine (CR) protocol, which allows separating evoked changes from endogenously generated oscillations in physiology. Cosinor regression shows circadian rhythmicity in 25% of lipids in both groups. On average, the older group has a ~14% lower amplitude and a ~2.1 h earlier acrophase of the lipid circadian rhythms (both, p ≤ 0.001). Additionally, more rhythmic circadian lipids have a significant linear component in addition to the sinusoidal across the 27-h CR in the older group (44/56) compared to the younger group (18/58, p < 0.0001). Results from individual-level data are consistent with group-average results. Results indicate that prevalence of endogenous circadian rhythms of the human plasma lipidome is preserved with healthy aging into middle-age, but significant changes in rhythmicity include a reduction in amplitude, earlier acrophase, and an altered temporal relationship between central and lipid rhythms.


Assuntos
Ritmo Circadiano , Lipidômica , Pessoa de Meia-Idade , Feminino , Humanos , Adulto Jovem , Adulto , Estudos Retrospectivos , Ritmo Circadiano/fisiologia , Envelhecimento , Lipídeos
3.
Anal Chem ; 90(22): 13523-13532, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30265528

RESUMO

Lipidomics requires the accurate annotation of lipids in complex samples to enable determination of their biological relevance. We demonstrate that unintentional in-source fragmentation (ISF, common in lipidomics) generates ions that have identical masses to other lipids. Lysophosphatidylcholines (LPC), for example, generate in-source fragments with the same mass as free fatty acids and lysophosphatidylethanolamines (LPE). The misannotation of in-source fragments as true lipids is particularly insidious in complex matrixes since most masses are initially unannotated and comprehensive lipid standards are unavailable. Indeed, we show such LPE/LPC misannotations are incorporated in the data submitted to the National Institute of Standards and Technology (NIST) interlaboratory comparison exercise. Computer simulations exhaustively identified potential misannotations. The selection of in-source fragments of highly abundant lipids as features, instead of the correct recognition of trace lipids, can potentially lead to (i) missing the biologically relevant lipids (i.e., a false negative) and/or (ii) incorrect assignation of a phenotype to an incorrect lipid (i.e., false positive). When ISF is not eliminated in the negative ion mode, ∼40% of the 100 most abundant masses corresponding to unique phospholipids measured in plasma were artifacts from ISF. We show that chromatographic separation and ion intensity considerations assist in distinguishing precursor ions from in-source fragments, suggesting ISF may be especially problematic when complex samples are analyzed via shotgun lipidomics. We also conduct a systematic evaluation of electrospray ionization (ESI) source parameters on an Exactive equipped with a heated electrospray ionization (HESI-II) source with the objective of obtaining uniformly appropriate source conditions for a wide range of lipids, while, at the same time, reducing in-source fragmentation.


Assuntos
Fosfolipídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Simulação por Computador
4.
NPJ Aging Mech Dis ; 2: 16022, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28721274

RESUMO

Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa-/-|Xpa-/- mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes.

5.
J Lipid Res ; 54(10): 2623-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23690505

RESUMO

The interaction of dietary fats and carbohydrates on liver mitochondria were examined in male FBNF1 rats fed 20 different low-fat isocaloric diets. Animal growth rates and mitochondrial respiratory parameters were essentially unaffected, but mass spectrometry-based mitochondrial lipidomics profiling revealed increased levels of cardiolipins (CLs), a family of phospholipids essential for mitochondrial structure and function, in rats fed saturated or trans fat-based diets with a high glycemic index. These mitochondria showed elevated monolysocardiolipins (a CL precursor/product of CL degradation), elevated ratio of trans-phosphocholine (PC) (18:1/18:1) to cis-PC (18:1/18:1) (a marker of thiyl radical stress), and decreased ubiquinone Q9; the latter two of which imply a low-grade mitochondrial redox abnormality. Extended analysis demonstrated: i) dietary fats and, to a lesser extent, carbohydrates induce changes in the relative abundance of specific CL species; ii) fatty acid (FA) incorporation into mature CLs undergoes both positive (>400-fold) and negative (2.5-fold) regulation; and iii) dietary lipid abundance and incorporation of FAs into both the CL pool and specific mature tetra-acyl CLs are inversely related, suggesting previously unobserved compensatory regulation. This study reveals previously unobserved complexity/regulation of the central lipid in mitochondrial metabolism.


Assuntos
Cardiolipinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Respiração Celular , Dieta , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Índice Glicêmico , Fígado/metabolismo , Masculino , Estresse Oxidativo , Consumo de Oxigênio , Ratos , Ubiquinona/metabolismo
6.
Metabolomics ; 9(1 Suppl): 67-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23646040

RESUMO

Lipids play multiple roles essential for proper mitochondrial function, from their involvement in membrane structure and fluidity, cellular energy storage, and signaling. Lipids are also major targets for reactive species, and their peroxidation byproducts themselves mediate further damage. Thousands of lipid species, from multiple classes and categories, are involved in these processes, suggesting lipid quantitative and structural analysis can help provide a better understanding of mitochondrial physiological status. Due to the diversity of lipids that contribute to and reflect mitochondrial function, analytical methods should ideally cover a wide range of lipid classes, and yield both quantitative and structural information. We developed a high resolution LC-MS method that is able to monitor the major lipid classes found in biospecimens (ie. biofluids, cells and tissues) with relative quantitation in an efficient, sensitive, and robust manner while also characterizing individual lipid side-chains, by all ion HCD fragmentation and chromatographic alignment. This method was used to profile the liver mitochondrial lipids from 192 rats undergoing a dietary macronutrient study in which changes in mitochondria function are related to changes in the major fat and glycemic index component of each diet. A total of 381 unique lipids, spanning 5 of the major LIPID MAPS defined categories, including fatty acyls, glycerophospholipids, glycerolipids, sphingolipids and prenols, were identified in mitochondria using the non-targeted LC-MS analysis in both positive and negative mode. The intention of this report is to show the breadth of this non-targeted LC-MS profiling method with regards to its ability to profile, identify and characterize the mitochondrial lipidome and the details of this will be discussed.

7.
Anal Chem ; 85(2): 1114-23, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23210743

RESUMO

Robust methodologies for the analysis of fecal material will facilitate the understanding of gut (patho)physiology and its role in health and disease and will help improve care for individual patients, especially high-risk populations, such as premature infants. Because lipidomics offers a biologically and analytically attractive approach, we developed a simple, sensitive, and quantitatively precise method for profiling intact lipids in fecal material. The method utilizes two separate, complementary extraction chemistries, dichloromethane (DCM) and a methyl tert-butyl ether/hexafluoroisopropanol (MTBE) mixture, alone or with high pressure cycling. Extracts were assessed by liquid chromatography-high-resolution mass spectrometry-based profiling with all ion higher energy collisional dissociation fragmentation in both positive and negative ionization modes. This approach provides both class-specific and lipid-specific fragments, enhancing lipid characterization. Solvents preferentially extracted lipids based on hydrophobicity. More polar species preferred MTBE; more hydrophobic compounds preferred DCM. Pressure cycling differentially increased the yield of some lipids. The platform enabled analysis of >500 intact lipophilic species with over 300 lipids spanning 6 LIPID MAPS categories identified in the fecal matter from premature infants. No previous report exists that provides these data; thus, this study represents a new paradigm for assessing nutritional health, inflammation, and infectious disease in vulnerable populations.


Assuntos
Lipídeos/análise , Cromatografia Líquida de Alta Pressão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactente , Espectrometria de Massas , Éteres Metílicos/química , Cloreto de Metileno/química , Propanóis/química
8.
J Lipids ; 2012: 797105, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970378

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) block apoptotic neuronal cell death and are strongly neuroprotective in acute and chronic neurodegeneration. Theoretical considerations, indirect data, and consideration of parsimony lead to the hypothesis that modulation of mitochondrial pathway(s) underlies at least some of the neuroprotective effects of n-3 PUFAs. We therefore systematically tested this hypothesis on healthy male FBFN1 rats fed for four weeks with isocaloric, 10% fat-containing diets supplemented with 1, 3, or 10% fish oil (FO). High resolution mass spectrometric analysis confirmed expected diet-driven increases in docosahexaenoic acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3) in sera, liver and nonsynaptosomal brain mitochondria. We further evaluated the resistance of brain and liver mitochondria to Ca(2+) overload and prooxidants. Under these conditions, neither mitochondrial resistance to Ca(2+) overload and prooxidants nor mitochondrial physiology is altered by diet, despite the expected incorporation of DHA and EPA in mitochondrial membranes and plasma. Collectively, the data eliminate one of the previously proposed mechanism(s) that n-3 PUFA induced augmentation of mitochondrial resistance to the oxidant/calcium-driven dysfunction. These data furthermore allow us to define a specific series of follow-up experiments to test related hypotheses about the effect of n-3 PUFAs on brain mitochondria.

9.
Anal Chem ; 84(13): 5509-17, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22656324

RESUMO

The increased presence of synthetic trans fatty acids into western diets has been shown to have deleterious effects on physiology and raising an individual's risk of developing metabolic disease, cardiovascular disease, and stroke. The importance of these fatty acids for health and the diversity of their (patho) physiological effects suggest that not only should the free trans fatty acids be studied but also monitoring the presence of these fats into the side chains of biological lipids, such as glycerophospholipids, is also essential. We developed a high resolution LC-MS method that quantitatively monitors the major lipid classes found in biospecimens in an efficient, sensitive, and robust manner while also characterizing individual lipid side chains through the use of high energy collisional dissociation (HCD) fragmentation and chromatographic alignment. We herein show how this previously described reversed phase method can baseline separate the cis-trans isomers of phosphatidylglycerol and phosphatidylcholine (PC) with two 18:1 side chains, in both positive and negative mode, as neat solutions and when spiked into a biological matrix. Endogenous PC (18:1/18:1)-cis and PC (18:1/18:1)-trans isomers were examined in mitochondrial and serum profiling studies, where rats were fed diets enriched in either trans 18:1 fatty acids or cis 18:1 fatty acids. In this study, we determined the cis:trans isomer ratios of PC (18:1/18:1) and related this ratio to dietary composition. This generalized LC-MS method enables the monitoring of trans fats in biological lipids in the context of a nontargeted method, allowing for relative quantitation and enhanced identification of unknown lipids in complex matrixes.


Assuntos
Cromatografia de Fase Reversa , Fosfatidilcolinas/isolamento & purificação , Fosfatidilgliceróis/isolamento & purificação , Animais , Cromatografia de Fase Reversa/métodos , Dieta , Radicais Livres/química , Isomerismo , Masculino , Espectrometria de Massas/métodos , Mitocôndrias/química , Fosfatidilcolinas/sangue , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Ratos , Ratos Endogâmicos F344
10.
Anal Chem ; 83(17): 6648-57, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21774539

RESUMO

There is a growing need both clinically and experimentally to improve the characterization of blood lipids. A liquid chromatography-mass spectrometry (LC-MS) method, developed for the qualitative and semiquantitative detection of lipids in biological samples and previously validated in mitochondrial samples, was now evaluated for the profiling of serum lipids. Data were acquired using high-resolution, full scan MS and high-energy, collisional dissociation (HCD), all ion fragmentation. The method was designed for efficient separation and detection in both positive and negative ionization mode and evaluated using standards spanning seven lipid classes. Platform performance, related to the identification and characterization of serum triglycerides (TGs), was assessed using extracted ion chromatograms with mass tolerance windows of 5 ppm or less from full scan exact mass measurements determined using SIEVE nondifferential LC-MS analysis software. The platform showed retention time coefficients of variation (CV) of <0.3%, mass accuracy values of <2 ppm error, and peak area CV of <13%, with the majority of that error coming from sample preparation and extraction rather than the LC-MS analysis, and linearity was shown to be over 4 orders of magnitude (r(2) = 0.999) for the standard TG (15:0)(3) spiked into serum. Instrument mass accuracy and precision were critical to the identification of unknown TG species, in part because these parameters enabled us to reduce false positives. In addition to detection and relative quantitation of TGs in serum, TG structures were characterized through the use of alternating HCD scans at different energies to produce diagnostic fragmentations on all ions in the analysis. The lipidomics method was applied to serum samples from 192 rats maintained on diets differing in macronutrient composition. The analysis identified 86 TG species with 81 unique masses that varied over 3.5 orders of magnitude and showed diet-dependency, consistent with TGs linking diet and disease risk.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Triglicerídeos/sangue , Animais , Lipídeos/sangue , Masculino , Ratos , Ratos Endogâmicos F344 , Software
11.
Anal Chem ; 83(3): 940-9, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21192696

RESUMO

A liquid chromatography-mass spectrometry (LC-MS) method was used for separation of lipid classes as well as both qualitative and semiquantitative detection of individual lipids in biological samples. Data were acquired using high-resolution full-scan MS and high-energy collisional dissociation (HCD) all ion fragmentation. The method was evaluated for efficient separation and detection in both positive and negative ionization mode using standards spanning six lipid classes. Platform linearity and robustness, related to the mitochondrial lipid cardiolipin (CL), were assessed using extracted ion chromatograms with mass tolerance windows of 5 ppm or less from full scan exact mass measurements. The platform CL limit of detection was determined to be 5 pmol (0.9 µM) on the column, with mass accuracy <1.5 ppm, retention time coefficients of variation (CV) < 0.5%, and area CV < 13%. This mass accuracy was critical to the identification of unknown CL species in mitochondria samples, through the elimination of false positives. In addition to detection and relative quantitation of CL species in mitochondria, CL structures were characterized through the use of alternating HCD scans at different energies to produce diagnostic fragmentations on all ions in the analysis. The developed lipid profiling method was applied to mitochondrial samples from an animal study related to the linkages between diet, mitochondrial function, and disease. The analysis identified 28 unique CL species and two monolysocardiolipin species that are often associated with mitochondrial stress and dysfunction.


Assuntos
Cardiolipinas/análise , Cromatografia Líquida/métodos , Lisofosfolipídeos/análise , Espectrometria de Massas/métodos , Mitocôndrias Hepáticas/química , Animais , Lipídeos/análise , Masculino , Estrutura Molecular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...