Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1193907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293232

RESUMO

Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.

2.
Microorganisms ; 11(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37317273

RESUMO

Antimicrobial resistance is a global threat to human health and welfare, food safety, and environmental health. The rapid detection and quantification of antimicrobial resistance are important for both infectious disease control and public health threat assessment. Technologies such as flow cytometry can provide clinicians with the early information, they need for appropriate antibiotic treatment. At the same time, cytometry platforms facilitate the measurement of antibiotic-resistant bacteria in environments impacted by human activities, enabling assessment of their impact on watersheds and soils. This review focuses on the latest applications of flow cytometry for the detection of pathogens and antibiotic-resistant bacteria in both clinical and environmental samples. Novel antimicrobial susceptibility testing frameworks embedding flow cytometry assays can contribute to the implementation of global antimicrobial resistance surveillance systems that are needed for science-based decisions and actions.

3.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108183

RESUMO

The unprecedented increase in microbial resistance rates to all current drugs raises an acute need for the design of more effective antimicrobial strategies. Moreover, the importance of oxidative stress due to chronic inflammation in infections with resistant bacteria represents a key factor for the development of new antibacterial agents with potential antioxidant effects. Thus, the purpose of this study was to bioevaluate new O-aryl-carbamoyl-oxymino-fluorene derivatives for their potential use against infectious diseases. With this aim, their antimicrobial effect was evaluated using quantitative assays (minimum inhibitory/bactericidal/biofilms inhibitory concentrations) (MIC/MBC/MBIC), the obtained values being 0.156-10/0.312-10/0.009-1.25 mg/mL), while some of the involved mechanisms (i.e., membrane depolarization) were investigated by flow cytometry. The antioxidant activity was evaluated by studying the scavenger capacity of DPPH and ABTS•+ radicals and the toxicity was tested in vitro on three cell lines and in vivo on the crustacean Artemia franciscana Kellog. The four compounds derived from 9H-fluoren-9-one oxime proved to exhibit promising antimicrobial features and particularly, a significant antibiofilm activity. The presence of chlorine induced an electron-withdrawing effect, favoring the anti-Staphylococcus aureus and that of the methyl group exhibited a +I effect of enhancing the anti-Candida albicans activity. The IC50 values calculated in the two toxicity assays revealed similar values and the potential of these compounds to inhibit the proliferation of tumoral cells. Taken together, all these data demonstrate the potential of the tested compounds to be further used for the development of novel antimicrobial and anticancer agents.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Candida albicans , Biofilmes , Testes de Sensibilidade Microbiana
4.
Front Microbiol ; 13: 965132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187968

RESUMO

The intensive use of antibiotics in the veterinary sector, linked to the application of manure-derived amendments in agriculture, translates into increased environmental levels of chemical residues, AR bacteria (ARB) and antibiotic resistance genes (ARG). The aim of this review was to evaluate the current evidence regarding the impact of animal farming and manure application on the antibiotic resistance pool in the environment. Several studies reported correlations between the prevalence of clinically relevant ARB and the amount and classes of antibiotics used in animal farming (high resistance rates being reported for medically important antibiotics such as penicillins, tetracyclines, sulfonamides and fluoroquinolones). However, the results are difficult to compare, due to the diversity of the used antimicrobials quantification techniques and to the different amounts and types of antibiotics, exhibiting various degradation times, given in animal feed in different countries. The soils fertilized with manure-derived products harbor a higher and chronic abundance of ARB, multiple ARG and an enriched associated mobilome, which is also sometimes seen in the crops grown on the amended soils. Different manure processing techniques have various efficiencies in the removal of antibiotic residues, ARB and ARGs, but there is only a small amount of data from commercial farms. The efficiency of sludge anaerobic digestion appears to be dependent on the microbial communities composition, the ARB/ARG and operating temperature (mesophilic vs. thermophilic conditions). Composting seems to reduce or eliminate most of antibiotics residues, enteric bacteria, ARB and different representative ARG in manure more rapidly and effectively than lagoon storage. Our review highlights that despite the body of research accumulated in the last years, there are still important knowledge gaps regarding the contribution of manure to the AMR emergence, accumulation, spread and risk of human exposure in countries with high clinical resistance rates. Land microbiome before and after manure application, efficiency of different manure treatment techniques in decreasing the AMR levels in the natural environments and along the food chain must be investigated in depth, covering different geographical regions and countries and using harmonized methodologies. The support of stakeholders is required for the development of specific best practices for prudent - cautious use of antibiotics on farm animals. The use of human reserve antibiotics in veterinary medicine and of unprescribed animal antimicrobials should be stopped and the use of antibiotics on farms must be limited. This integrated approach is needed to determine the optimal conditions for the removal of antibiotic residues, ARB and ARG, to formulate specific recommendations for livestock manure treatment, storage and handling procedures and to translate them into practical on-farm management decisions, to ultimately prevent exposure of human population.

5.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443608

RESUMO

In order to develop novel bioactive substances with potent activities, some new valine-derived compounds incorporating a 4-(phenylsulfonyl)phenyl fragment, namely, acyclic precursors from N-acyl-α-amino acids and N-acyl-α-amino ketones classes, and heterocycles from the large family of 1,3-oxazole-based compounds, were synthesized. The structures of the new compounds were established using elemental analysis and spectral (UV-Vis, FT-IR, MS, NMR) data, and their purity was checked by reversed-phase HPLC. The newly synthesized compounds were evaluated for their antimicrobial and antibiofilm activities, for toxicity on D. magna, and by in silico studies regarding their potential mechanism of action and toxicity. The 2-aza-3-isopropyl-1-[4-(phenylsulfonyl)phenyl]-1,4-butanedione 4b bearing a p-tolyl group in 4-position exhibited the best antibacterial activity against the planktonic growth of both Gram-positive and Gram-negative strains, while the N-acyl-α-amino acid 2 and 1,3-oxazol-5(4H)-one 3 inhibited the Enterococcus faecium biofilms. Despite not all newly synthesized compounds showing significant biological activity, the general scaffold allows several future optimizations for obtaining better novel antimicrobial agents by the introduction of various substituents on the phenyl moiety at position 5 of the 1,3-oxazole nucleus.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Cetonas/síntese química , Cetonas/farmacologia , Oxazóis/síntese química , Oxazóis/farmacologia , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos , Técnicas de Química Sintética , Cetonas/química , Oxazóis/química , Relação Estrutura-Atividade
6.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443693

RESUMO

The multi-step synthesis, physico-chemical characterization, and biological activity of novel valine-derived compounds, i.e., N-acyl-α-amino acids, 1,3-oxazol-5(4H)-ones, N-acyl-α-amino ketones, and 1,3-oxazoles derivatives, bearing a 4-[(4-chlorophenyl)sulfonyl]phenyl moiety are reported here. The structures of the newly synthesized compounds were confirmed by spectral (UV-Vis, FT-IR, MS, 1H- and 13C-NMR) data and elemental analysis results, and their purity was determined by RP-HPLC. The new compounds were assessed for their antimicrobial activity and toxicity to aquatic crustacean Daphnia magna. Also, in silico studies regarding their potential mechanism of action and toxicity were performed. The antimicrobial evaluation revealed that the 2-{4-[(4-chlorophenyl)sulfonyl]benzamido}-3-methylbutanoic acid and the corresponding 1,3-oxazol-5(4H)-one exhibited antimicrobial activity against Gram-positive bacterial strains and the new 1,3-oxazole containing a phenyl group at 5-position against the C. albicans strain.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/toxicidade , Ácido Benzoico/síntese química , Ácido Benzoico/toxicidade , Simulação por Computador , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Biofilmes/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética , Testes de Toxicidade
7.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070126

RESUMO

Antimicrobial resistance is one of the major public health threats at the global level, urging the search for new antimicrobial molecules. The fluorene nucleus is a component of different bioactive compounds, exhibiting diverse pharmacological actions. The present work describes the synthesis, chemical structure elucidation, and bioactivity of new O-aryl-carbamoyl-oxymino-fluorene derivatives and the contribution of iron oxide nanoparticles to enhance the desired biological activity. The antimicrobial activity assessed against three bacterial and fungal strains, in suspension and biofilm growth state, using a quantitative assay, revealed that the nature of substituents on the aryl moiety are determinant for both the spectrum and intensity of the inhibitory effect. The electron-withdrawing inductive effect of chlorine atoms enhanced the activity against planktonic and adhered Staphylococcus aureus, while the +I effect of the methyl group enhanced the anti-fungal activity against Candida albicans strain. The magnetite nanoparticles have substantially improved the antimicrobial activity of the new compounds against planktonic microorganisms. The obtained compounds, as well as the magnetic core@shell nanostructures loaded with these compounds have a promising potential for the development of novel antimicrobial strategies.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Fluorenos/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Fluorenos/química , Fungos/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Magnetometria , Testes de Sensibilidade Microbiana , Plâncton/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803255

RESUMO

Globally, we are facing a worrying increase in type 1 diabetes mellitus (T1DM) incidence, with onset at younger age shedding light on the need to better understand the mechanisms of disease and step-up prevention. Given its implication in immune system development and regulation of metabolism, there is no surprise that the gut microbiota is a possible culprit behind T1DM pathogenesis. Additionally, microbiota manipulation by probiotics, prebiotics, dietary factors and microbiota transplantation can all modulate early host-microbiota interactions by enabling beneficial microbes with protective potential for individuals with T1DM or at high risk of developing T1DM. In this review, we discuss the challenges and perspectives of translating microbiome data into clinical practice. Nevertheless, this progress will only be possible if we focus our interest on developing numerous longitudinal, multicenter, interventional and double-blind randomized clinical trials to confirm their efficacy and safety of these therapeutic approaches.


Assuntos
Diabetes Mellitus Tipo 1/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Diabetes Mellitus Tipo 1/terapia , Método Duplo-Cego , Disbiose/terapia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Microorganisms ; 8(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987852

RESUMO

Coronaviruses are large, enveloped viruses with a single-stranded RNA genome, infecting both humans and a wide range of wild and domestic animals. SARS-CoV-2, the agent of the COVID-19 pandemic, has 80% sequence homology with SARS-CoV-1 and 96-98% homology with coronaviruses isolated from bats. The spread of infection is favored by prolonged exposure to high densities of aerosols indoors. Current studies have shown that SARS-CoV-2 is much more stable than other coronaviruses and viral respiratory pathogens. The severe forms of infection are associated with several risk factors, including advanced age, metabolic syndrome, diabetes, obesity, chronic inflammatory or autoimmune disease, and other preexisting infectious diseases, all having in common the pre-existence of a pro-inflammatory condition. Consequently, it is essential to understand the relationship between the inflammatory process and the specific immune response in SARS-CoV-2 infection. In this review, we present a general characterization of the SARS-CoV-2 virus (origin, sensitivity to chemical and physical factors, multiplication cycle, genetic variability), the molecular mechanisms of COVID-19 pathology, the host immune response and discuss how the inflammatory conditions associated with different diseases could increase the risk of COVID-19. Last, but not least, we briefly review the SARS-CoV-2 diagnostics, pharmacology, and future approaches toward vaccine development.

10.
Molecules ; 25(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218209

RESUMO

The increasing threat of antimicrobial resistance to all currently available therapeutic agents has urged the development of novel antimicrobials. In this context, a series of new benzoylthiourea derivatives substituted with one or more fluorine atoms and with the trifluoromethyl group have been tested, synthesized, and characterized by IR, NMR, CHNS and crystal X-ray diffraction. The molecular docking has provided information regarding the binding affinity and the orientation of the new compounds to Escherichia coli DNA gyrase B. The docking score predicted the antimicrobial activity of the studied compounds, especially against E. coli, which was further demonstrated experimentally against planktonic and biofilm embedded bacterial and fungal cells. The compounds bearing one fluorine atom on the phenyl ring have shown the best antibacterial effect, while those with three fluorine atoms exhibited the most intensive antifungal activity. All tested compounds exhibited antibiofilm activity, correlated with the trifluoromethyl substituent, most favorable in para position.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Tioureia/análogos & derivados , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Fungos/efeitos dos fármacos , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Eletricidade Estática , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia
11.
Molecules ; 25(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941125

RESUMO

In a drug-repurposing-driven approach for speeding up the development of novel antimicrobial agents, this paper presents for the first time in the scientific literature the synthesis, physico-chemical characterization, in silico analysis, antimicrobial activity against bacterial and fungal strains in planktonic and biofilm growth state, as well as the in vitro cytotoxicity of some new 6,11-dihydrodibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)oximes. The structures of intermediary and final substances (compounds 7a-j) were confirmed by 1H-NMR, 13C-NMR and IR spectra, as well as by elemental analysis. The in silico bioinformatic and cheminformatic studies evidenced an optimal pharmacokinetic profile for the synthesized compounds 7a-j, characterized by an average lipophilic character predicting good cell membrane permeability and intestinal absorption; low maximum tolerated dose for humans; potassium channels encoded by the hERG I and II genes as potential targets and no carcinogenic effects. The obtained compounds exhibited a higher antimicrobial activity against the planktonic Gram-positive Staphylococcus aureus and Bacillus subtilis strains and the Candida albicans fungal strain. The obtained compounds also inhibited the ability of S. aureus, B. subtilis, Escherichia coli and C. albicans strains to colonize the inert substratum, accounting for their possible use as antibiofilm agents. All the active compounds exhibited low or acceptable cytotoxicity levels on the HCT8 cells, ensuring the potential use of these compounds for the development of new antimicrobial drugs with minimal side effects on the human cells and tissues.


Assuntos
Anti-Infecciosos , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Simulação por Computador , Oximas , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Humanos , Oximas/química , Oximas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...