Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Appl Environ Microbiol ; 90(5): e0029424, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624200

RESUMO

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Assuntos
Aspergillus oryzae , Carboxiliases , Proteínas Fúngicas , Oryza , Aspergillus oryzae/genética , Aspergillus oryzae/enzimologia , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/química , Oryza/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Agmatina/metabolismo
2.
J Fungi (Basel) ; 10(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38392785

RESUMO

DNA-binding transcription factors are broadly characterized as proteins that bind to specific sequences within genomic DNA and modulate the expression of downstream genes. This study focused on KojR, a transcription factor involved in the metabolism of kojic acid, which is an organic acid synthesized in Aspergillus oryzae and is known for its tyrosinase-inhibitory properties. However, the regulatory mechanism underlying KojR-mediated kojic acid synthesis remains unclear. Hence, we aimed to obtain a comprehensive identification of KojR-associated genes using genomic systematic evolution of ligands by exponential enrichment with high-throughput DNA sequencing (gSELEX-Seq) and RNA-Seq. During the genome-wide exploration of KojR-binding sites via gSELEX-Seq and identification of KojR-dependent differentially expressed genes (DEGs) using RNA-Seq, we confirmed that KojR preferentially binds to 5'-CGGCTAATGCGG-3', and KojR directly regulates kojT, as was previously reported. We also observed that kojA expression, which may be controlled by KojR, was significantly reduced in a ΔkojR strain. Notably, no binding of KojR to the kojA promoter region was detected. Furthermore, certain KojR-dependent DEGs identified in the present study were associated with enzymes implicated in the carbon metabolic pathway of A. oryzae. This strongly indicates that KojR plays a central role in carbon metabolism in A. oryzae.

3.
Mol Biol Cell ; 34(13): ar127, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756125

RESUMO

Transglutaminase (TG) is a ubiquitous enzyme that crosslinks substrates. In humans, TG participates in blood clotting and wound healing. However, the functions related to the cellular protection of microbial TG are unknown. In filamentous fungi, we previously identified SppB, which contains the transglutaminase core (TGc) domain and functions in hyphal protection at the septal pore upon wounding. Here, we further analyzed the cytokinesis-related protein Cyk3 and peptide N-glycanase Png1, as both contain the TGc domain. All three proteins exhibited functional importance in wound-related hyphal protection at the septal pore. Upon wounding, SppB and AoPng1 accumulated at the septal pore, whereas AoCyk3 and AoPng1 normally localized around the septal pore. The putative Cys-His-Asp catalytic triad of SppB is conserved with the human TGc domain-containing kyphoscoliosis peptidase. Catalytic triad disruptive mutants of SppB and AoCyk3 exhibited septal pore plugging defects. Similar to other TGs, SppB underwent wound-induced truncation of the N-terminal region. Notably, TG activity was detected in vivo at the septal pore of wounded hyphae using a fluorescent-labeled substrate; however, the activity was inhibited by the TG inhibitor cystamine. Our study suggests a conserved role for TGc domain-containing proteins in wound-related protection in fungi, similar to that in humans.


Assuntos
Proteínas Fúngicas , Hifas , Humanos , Proteínas Fúngicas/metabolismo , Transglutaminases/metabolismo , Fungos/metabolismo , Citocinese
4.
Biosci Biotechnol Biochem ; 87(10): 1236-1248, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37500264

RESUMO

Aspergillus sojae has traditionally been used in soy sauce brewing. Genetic modification techniques have been established in A. sojae, but it is difficult to apply them to various industrial strains. Although we have previously developed a CRISPR/Cpf1 system for genetic modification of A. sojae, another genome editing system was required for versatile modification. In addition, repetitive genetic modification using the CRISPR system has not been established in A. sojae. In this study, we demonstrated mutagenesis, gene deletion/integration, and large deletion of a chromosomal region in A. sojae using the CRISPR/Cas9 system. We also successfully performed repetitive genetic modification using a method that involved forced recycling of genome-editing plasmids. Moreover, we demonstrated that the effects of genetic modification related to soy sauce brewing differed among A. sojae industrial strains. These results showed that our technique of using the CRISPR/Cas9 system is a powerful tool for genetic modification in A. sojae.


Assuntos
Edição de Genes , Alimentos de Soja , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Aspergillus/genética
5.
Front Microbiol ; 14: 1135012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970664

RESUMO

The filamentous fungus Aspergillus oryzae, in which sexual reproduction remains to be discovered, proliferates mainly via asexual spores (conidia). Therefore, despite its industrial importance in food fermentation and recombinant protein production, breeding beneficial strains by genetic crosses is difficult. In Aspergillus flavus, which is genetically close to A. oryzae, structures known as sclerotia are formed asexually, but they are also related to sexual development. Sclerotia are observed in some A. oryzae strains, although no sclerotia formation has been reported in most strains. A better understanding of the regulatory mechanisms underlying sclerotia formation in A. oryzae may contribute to discover its sexual development. Some factors involved in sclerotia formation have been previously identified, but their regulatory mechanisms have not been well studied in A. oryzae. In this study, we found that copper strongly inhibited sclerotia formation and induced conidiation. Deletion of AobrlA encoding a core regulator of conidiation and ecdR involved in transcriptional induction of AobrlA suppressed the copper-mediated inhibition of sclerotia formation, suggesting that AobrlA induction in response to copper leads not only to conidiation but also to inhibition of sclerotia formation. In addition, deletion of the copper-dependent superoxide dismutase (SOD) gene and its copper chaperone gene partially suppressed such copper-mediated induction of conidiation and inhibition of sclerotia formation, indicating that copper regulates asexual development via the copper-dependent SOD. Taken together, our results demonstrate that copper regulates asexual development, such as sclerotia formation and conidiation, via the copper-dependent SOD and transcriptional induction of AobrlA in A. oryzae.

6.
Nat Commun ; 14(1): 1418, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932089

RESUMO

Multicellular filamentous fungi have septal pores that allow cytoplasmic exchange, and thus connectivity, between neighboring cells in the filament. Hyphal wounding and other stress conditions induce septal pore closure to minimize cytoplasmic loss. However, the composition of the septal pore and the mechanisms underlying its function are not well understood. Here, we set out to identify new septal components by determining the subcellular localization of 776 uncharacterized proteins in a multicellular ascomycete, Aspergillus oryzae. The set of 776 uncharacterized proteins was selected on the basis that their genes were present in the genomes of multicellular, septal pore-bearing ascomycetes (three Aspergillus species, in subdivision Pezizomycotina) and absent/divergent in the genomes of septal pore-lacking ascomycetes (yeasts). Upon determining their subcellular localization, 62 proteins were found to localize to the septum or septal pore. Deletion of the encoding genes revealed that 23 proteins are involved in regulating septal pore plugging upon hyphal wounding. Thus, this study determines the subcellular localization of many uncharacterized proteins in A. oryzae and, in particular, identifies a set of proteins involved in septal pore function.


Assuntos
Ascomicetos , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Citoplasma/metabolismo , Ascomicetos/metabolismo , Proteínas de Fluorescência Verde/metabolismo
7.
Front Microbiol ; 14: 1110996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814571

RESUMO

Filamentous fungi belonging to the genus Aspergillus are known to possess galactomannan in their cell walls. Galactomannan is highly antigenic to humans and has been reported to be involved in the pathogenicity of pathogenic filamentous fungi, such as A. fumigatus, and in immune responses. In this study, we aimed to confirm the presence of D-galactofuranose-containing glycans and to clarify the biosynthesis of D-galactofuranose-containing glycans in Aspergillus oryzae, a yellow koji fungus. We found that the galactofuranose antigen is also present in A. oryzae. Deletion of ugmA, which encodes UDP-galactopyranose mutase in A. oryzae, suppressed mycelial elongation, suggesting that D-galactofuranose-containing glycans play an important role in cell wall integrity in A. oryzae. Proton nuclear magnetic resonance spectrometry revealed that the galactofuranose-containing sugar chain was deficient and that core mannan backbone structures were present in ΔugmA A. oryzae, indicating the presence of fungal-type galactomannan in the cell wall fraction of A. oryzae. The findings of this study provide new insights into the cell wall structure of A. oryzae, which is essential for the production of fermented foods in Japan.

9.
Diagn Microbiol Infect Dis ; 102(4): 115633, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35158291

RESUMO

We observed an emerging resistance to ß-lactams in a P. ananatis bacteremia case. Whole genome sequence analysis detected two ß-lactamase genes as well as related genes that regulate the ß-lactamase genes in the chromosome. The induction experiment resulted in the expression of the class A ß-lactamase gene in the isolate.


Assuntos
Bacteriemia , Pantoea , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Humanos , Pantoea/genética , beta-Lactamas/farmacologia
10.
J Biosci Bioeng ; 133(4): 353-361, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35101371

RESUMO

In industrial applications such as fermentation and heterologous protein production, various Aspergillus oryzae and A. sojae strains are used. Although genetic engineering techniques have been developed for these filamentous fungi, applying such classical techniques to many strains is difficult. Therefore, the establishment of innovative technologies applicable to various industrial strains is required. We previously developed a genome editing technology using the CRISPR/Cas9 system for the efficient genetic engineering of A. oryzae; however, this system is limited by its protospacer adjacent motif sequence. In A. sojae, no genetic engineering using genome editing has been developed. In this study, we aimed to develop a genome editing technology using the Cpf1 nuclease for the genetic engineering of A. oryzae and A. sojae. AMA1-based genome editing vectors bearing codon-optimized cpf1 expression cassettes were constructed, and guide RNA expression cassettes were inserted into the Cpf1 genome editing vectors. Using the resultant plasmids, we performed mutagenesis of the AowA and sC genes in A. oryzae and the AswA gene in A. sojae. We deleted these genes by co-introducing the Cpf1 genome editing plasmid and the donor plasmid. Our study demonstrates that the CRISPR/Cpf1 system can be used as an efficient alternative to the CRISPR/Cas9 system to genetically engineer A. oryzae and as a new approach for efficient genetic engineering of A. sojae.


Assuntos
Aspergillus oryzae , Aspergillus , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Sistemas CRISPR-Cas/genética , Deleção de Genes , Edição de Genes/métodos , Mutagênese
11.
J Fungi (Basel) ; 7(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34436177

RESUMO

Aspergillus oryzae is a filamentous fungus that has been used in traditional Japanese brewing industries, such as the sake, soy sauce, and miso production. In addition, A. oryzae has been used in heterologous protein production, and the fungus has been recently used in biosynthetic research due to its ability to produce a large amount of heterologous natural products by introducing foreign biosynthetic genes. Genetic manipulation, which is important in the functional development of A. oryzae, has mostly been limited to the wild strain RIB40, a genome reference suitable for laboratory analysis. However, there are numerous industrial brewing strains of A. oryzae with various specialized characteristics, and they are used selectively according to the properties required for various purposes such as sake, soy sauce, and miso production. Since the early 2000s, genome editing technologies have been developed; among these technologies, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) have been applied to gene modification in A. oryzae. Notably, the CRISPR/Cas9 system has dramatically improved the efficiency of gene modification in industrial strains of A. oryzae. In this review, the development of genome editing technology and its application potentials in A. oryzae are summarized.

12.
Org Lett ; 23(7): 2616-2620, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33736433

RESUMO

Mycotoxin cyclochlorotine (1) and structurally related astins are cyclic pentapeptides containing unique nonproteinogenic amino acids, such as ß-phenylalanine, l-allo-threonine, and 3,4-dichloroproline. Herein, we report the biosynthetic pathway for 1, which involves intriguing tailoring processes mediated by DUF3328 proteins, including stereo- and regiospecific chlorination and hydroxylation and intramolecular O,N-transacylation. Our findings demonstrate that DUF3328 proteins, which are known to be involved in oxidative cyclization of fungal ribosomal peptides, have much higher functional diversity than previously expected.


Assuntos
Proteínas Fúngicas/genética , Micotoxinas/química , Peptídeos Cíclicos/biossíntese , Fenilalanina/química , Acilação , Aminoácidos/metabolismo , Vias Biossintéticas , Ciclização , Hidroxilação , Estrutura Molecular , Micotoxinas/metabolismo , Oxirredução , Peptídeos Cíclicos/química
13.
Front Fungal Biol ; 2: 675459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744139

RESUMO

Many eukaryotic histidine-to-aspartate (His-Asp) phosphorelay systems consist of three types of signal transducers: a His-kinase (HK), a response regulator (RR), and a histidine-containing phosphotransfer intermediate (HPt). In general, the HPt acts as an intermediate between the HK and the RR and is indispensable for inducing appropriate responses to environmental stresses. In a previous study, we attempted but were unable to obtain deletion mutants of the ypdA gene in order to characterize its function in the filamentous fungus Aspergillus nidulans. In the present study, we constructed the CypdA strain in which ypdA expression is conditionally regulated by the A. nidulans alcA promoter. We constructed CypdA strains with RR gene disruptions (CypdA-sskAΔ, CypdA-srrAΔ, and CypdA-sskAΔsrrAΔ). Suppression of YpdA induced by ypdA downregulation activated the downstream HogA mitogen-activated protein kinase cascade. YpdA suppression caused severe growth defects and abnormal hyphae, with features such as enhanced septation, a decrease in number of nuclei, nuclear fragmentation, and hypertrophy of vacuoles, both regulated in an SskA-dependent manner. Fludioxonil treatment caused the same cellular responses as ypdA suppression. The growth-inhibitory effects of fludioxonil and the lethality caused by ypdA downregulation may be caused by the same or similar mechanisms and to be dependent on both the SskA and SrrA pathways.

14.
Chembiochem ; 22(1): 203-211, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32885554

RESUMO

The filamentous fungus Aspergillus oryzae has 27 putative iterative type I polyketide synthase (PKS) gene clusters, but the secondary metabolites produced by them are mostly unknown. Here, we focused on eight clusters that were reported to be expressed at relatively high levels in a transcriptome analysis. By comparing metabolites between an octuple-deletion mutant of these eight PKS gene clusters and its parent strain, we found that A. oryzae produced 2,4'-dihydroxy-3'-methoxypropiophenone (1) and its precursor, 4'-hydroxy-3'-methoxypropiophenone (3) in a specific liquid medium. Furthermore, an iterative type I PKS (PpsB) encoded by AO090102000166 and an acetyl-CoA ligase (PpsA) encoded downstream from ppsB were shown to be essential for their biosynthesis. PpsC, encoded upstream from ppsB, was shown to have 3-binding activity (Kd =26.0±6.2 µM) and is suggested to be involved in the conversion of 3 to 1. This study deepens our understanding of cryptic secondary metabolism in A. oryzae.


Assuntos
Aspergillus oryzae/genética , Policetídeo Sintases/genética , Aspergillus oryzae/metabolismo , Estrutura Molecular , Policetídeo Sintases/metabolismo
15.
Mol Microbiol ; 115(4): 723-738, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33155715

RESUMO

Filamentous fungal cells, unlike yeasts, fuse during vegetative growth. The orthologs of mitogen-activated protein (MAP) kinase Fus3 and transcription factor Ste12 are commonly involved in the regulation of cell fusion. However, the specific regulatory mechanisms underlying cell fusion in filamentous fungi have not been revealed. In the present study, we identified the novel protein FsiA as an AoFus3- and AoSte12-interacting protein in the filamentous fungus Aspergillus oryzae. The expression of AonosA and cell fusion-related genes decreased upon fsiA deletion and increased with fsiA overexpression, indicating that FsiA is a positive regulator of cell fusion. In addition, the induction of cell fusion-related genes by fsiA overexpression was also observed in the Aoste12 deletion mutant, indicating that FsiA can induce the cell fusion-related genes in an AoSte12-independent manner. Surprisingly, the fsiA and Aoste12 double deletion mutant exhibited higher cell fusion efficiency and increased mRNA levels of the cell fusion-related genes as compared to the fsiA single deletion mutant, which revealed that AoSte12 represses the cell fusion-related genes in the fsiA deletion mutant. Taken together, our data demonstrate that FsiA activates the cell fusion-related genes by suppressing the negative function of AoSte12 as well as by an AoSte12-independent mechanism.


Assuntos
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , Fusão Celular , DNA Fúngico , Genes Fúngicos , Mapas de Interação de Proteínas , Deleção de Sequência
16.
Mol Microbiol ; 114(4): 626-640, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634260

RESUMO

The endophytic fungus Epichloë festucae systemically colonizes the intercellular spaces of cool-season grasses to establish a mutualistic symbiosis. Hyphal growth of the endophyte within the host plant is tightly regulated and synchronized with the growth of the host plant. A genetic screen to identify symbiotic genes identified mutant FR405 that had an antagonistic interaction with the host plant. Perennial ryegrass infected with the FR405 mutant were stunted and underwent premature senescence and death. The disrupted gene in FR405 encodes a nuclear-localized protein, designated as NsiA for nuclear protein for symbiotic infection. Like previously isolated symbiotic mutants the nsiA mutant is defective in hyphal cell fusion. NsiA interacts with Ste12, a C2H2 zinc-finger transcription factor, and a MAP kinase MpkB. Both are known as essential components for cell fusion in other fungal species. In E. festucae, MpkB, but not Ste12, is essential for cell fusion. Expression of several genes required for cell fusion and symbiosis, including proA/adv-1, pro41/ham-6, ham7, ham8, and ham9 were downregulated in the nsiA mutant. However, the NsiA ortholog in Neurospora crassa was not essential for hyphal cell fusion. These results demonstrate that the roles of NsiA and Ste12 orthologs in hyphal cell fusion are distinctive between fungal species.


Assuntos
Epichloe/metabolismo , Fusão Celular , Epichloe/enzimologia , Epichloe/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Lolium/metabolismo , Lolium/microbiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/genética , Simbiose/genética , Fatores de Transcrição/metabolismo
17.
Biosci Biotechnol Biochem ; 84(10): 2179-2183, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32657224

RESUMO

We developed an approach to genome editing of the white koji fungus, Aspergillus luchuensis mut. kawachii using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Co-transformation of AMA1-based Cas9 and gRNA expression plasmids achieved efficient gene knockout in A. kawachii. The plasmids were easily lost when selective pressure was removed, allowing for successive rounds of genome editing.


Assuntos
Aspergillus/genética , Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes/métodos , Sequência de Bases , Mutação
18.
Angew Chem Int Ed Engl ; 59(41): 17996-18002, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32677206

RESUMO

Lolitrems are tremorgenic indole diterpenes that exhibit a unique 5/6 bicyclic system of the indole moiety. Although genetic analysis has indicated that the prenyltransferase LtmE and the cytochrome P450 LtmJ are involved in the construction of this unique structure, the detailed mechanism remains to be elucidated. Herein, we report the reconstitution of the biosynthetic pathway for lolitrems employing a recently established genome-editing technique for the expression host Aspergillus oryzae. Heterologous expression and bioconversion of the various intermediates revealed that LtmJ catalyzes multistep oxidation to furnish the lolitrem core. We also isolated the key reaction intermediate with an epoxyalcohol moiety. This observation allowed us to establish the mechanism of radical-induced cyclization, which was firmly supported by density functional theory calculations and a model experiment with a synthetic analogue.


Assuntos
Álcoois/química , Diterpenos/síntese química , Alcaloides Indólicos/química , Indóis/síntese química , Ciclização
19.
Artigo em Inglês | MEDLINE | ID: mdl-32518660

RESUMO

BACKGROUND: 'Rice koji' is a solid culture of Aspergillus oryzae on steamed rice grains. Multiple parallel fermentation, wherein saccharification of rice by A. oryzae and alcohol fermentation by the budding yeast occur simultaneously, leads to the formation of a variety of ingredients of Japanese sake. In sake brewing, the degree of mycelial invasive growth into the steamed rice, called 'haze-komi', highly correlates with the digestibility and quality of rice koji, since the hyphae growing into the rice secrete amylases and digest starch. RESULTS: In this study, we investigated mycelial distribution of GFP-tagged A. oryzae in rice koji made with different types of rice, such as sake rice and eating rice, with 50 or 90% polishing rate to remove abundant proteins and lipids near the surface. In addition, we compared transcriptomes of A. oryzae in the different types of rice koji. Finally, we found that A. oryzae increases the nuclear number and hyphal width in the course of 1-3 days cultivation. CONCLUSIONS: Our imaging analyses indicate that A. oryzae hyphae grew more deeply into 50% polished rice than 90% polished rice. The increases of nuclear number may be a selectively acquired characteristic for the high secretory capacity during the long history of cultivation of this species.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32514366

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) as biopharmaceuticals take a pivotal role in the current therapeutic applications. Generally mammalian cell lines, such as those derived from Chinese hamster ovaries (CHO), are used to produce the recombinant antibody. However, there are still concerns about the high cost and the risk of pathogenic contamination when using mammalian cells. Aspergillus oryzae, a filamentous fungus recognized as a GRAS (Generally Regarded As Safe) organism, has an ability to secrete a large amount of proteins into the culture supernatant, and thus the fungus has been used as one of the cost-effective microbial hosts for heterologous protein production. Pursuing this strategy the human anti-TNFα antibody adalimumab, one of the world's best-selling antibodies for the treatment of immune-mediated inflammatory diseases including rheumatoid arthritis, was chosen to produce the full length of mAbs by A. oryzae. Generally, N-glycosylation of the antibody affects immune effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) via binding to the Fc receptor (FcγR) on immune cells. The CRISPR/Cas9 system was used to first delete the Aooch1 gene encoding a key enzyme for the hyper-mannosylation process in fungi to investigate the binding ability of antibody with FcγRIIIa. RESULTS: Adalimumab was expressed in A. oryzae by the fusion protein system with α-amylase AmyB. The full-length adalimumab consisting of two heavy and two light chains was successfully produced in the culture supernatants. Among the producing strains, the highest amount of antibody was obtained from the ten-protease deletion strain (39.7 mg/L). Two-step purifications by Protein A and size-exclusion chromatography were applied to obtain the high purity sample for further analysis. The antigen-binding and TNFα neutralizing activities of the adalimumab produced by A. oryzae were comparable with those of a commercial product Humira®. No apparent binding with the FcγRIIIa was detected with the recombinant adalimumab even by altering the N-glycan structure using the Aooch1 deletion strain, which suggests only a little additional activity of immune effector functions. CONCLUSION: These results demonstrated an alternative low-cost platform for human antibody production by using A. oryzae, possibly offering a reasonable expenditure for patient's welfare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...