Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38656570

RESUMO

Gastrulation is the first major differentiation process in animal embryos. However, the dynamics of human gastrulation remain mostly unknown owing to the ethical limitations. We studied the dynamics of the mesoderm and endoderm cell differentiation from human pluripotent stem cells for insight into the cellular dynamics of human gastrulation. Human pluripotent stem cells have properties similar to those of the epiblast, which gives rise to the three germ layers. The mesoderm and endoderm were induced with more than 75% purity from human induced pluripotent stem cells. Single-cell dynamics of pluripotent stem cell-derived mesoderm and endoderm cells were traced using time-lapse imaging. Both mesoderm and endoderm cells migrate randomly, accompanied by short-term directional persistence. No substantial differences were detected between mesoderm and endoderm migration. Computer simulations created using the measured parameters revealed that random movement and external force, such as the spread out of cells from the primitive streak area, mimicked the homogeneous discoidal germ layer formation. These results were consistent with the development of amniotes, which suggests the effectiveness of human pluripotent stem cells as a good model for studying human embryogenesis.

2.
PLoS One ; 13(9): e0201960, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30199537

RESUMO

Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial-mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial-mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.


Assuntos
Movimento Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesoderma/metabolismo , Gastrulação , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mesoderma/citologia
3.
In Vitro Cell Dev Biol Anim ; 54(7): 513-522, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29967976

RESUMO

A high density of human-induced pluripotent stem cells (hiPSCs) improves the efficiency of cardiac differentiation, suggesting the existence of indispensable cell-cell interaction signals. The complexity of interactions among cells at high density hinders the understanding of the roles of cell signals. In this study, we determined the minimum cell density that can initiate differentiation to facilitate cell-cell interaction studies. First, we co-induced cardiac differentiation in the presence of the glycogen synthase kinase-3ß inhibitor CHIR99021 and activin A at various cell densities. At an initial low density, cells died within a few days in RPMI-based medium. We then investigated the culture conditions required to maintain cell viability. We used a basal medium excluding important components for the maintenance of hiPSC pluripotency, including activin A, basic fibroblast growth factor, and insulin. Supplementation of the basal medium with Rho-associated protein kinase inhibitor and insulin improved cell viability. Interestingly, addition of basic fibroblast growth factor enabled the expression of cardiac markers at the mRNA level but not the protein level. After further modification of the culture conditions, 10% of the cells expressed the cardiac troponin T protein, which is associated with cell contraction. The novel protocol for cardiac differentiation at an initial low cell density can also be used to evaluate high cell density conditions. The findings will facilitate the identification of cell signals required for cardiomyocyte formation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/citologia , Ativinas/farmacologia , Animais , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia
4.
In Vitro Cell Dev Biol Anim ; 54(3): 231-240, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29435726

RESUMO

Thalidomide was once administered to pregnant women as a mild sedative; however, it was subsequently shown to be strongly teratogenic. Recently, there has been renewed interest in thalidomide because of its curative effects against intractable diseases. However, the teratogenicity of thalidomide is manifested in various ways and is still not fully understood. In the present study, we evaluated the effects of thalidomide on early mesodermal differentiation by examining the differentiation of human induced pluripotent stem cells (hiPSCs). The most common symptom of thalidomide teratogenicity is limb abnormality, which led us to hypothesize that thalidomide prevents early mesodermal differentiation. Therefore, mesodermal differentiation of hiPSCs was induced over a 6-d period. To induce early mesoderm differentiation, 1 d after seeding, the cells were incubated with the small molecule compound CHIR99021 for 3 d. Thalidomide exposure was initiated at the same time as CHIR99021 treatment. After 5 d of thalidomide exposure, the hiPSCs began expressing a mesodermal marker; however, the number of viable cells decreased significantly as compared to that of control cells. We observed that the proportion of apoptotic and dead cells increased on day 2; however, the proportion of dead cells on day 5 had decreased, suggesting that the cells were damaged by thalidomide during early mesodermal differentiation (days 0-2). Our findings may help elucidate the mechanism underlying thalidomide teratogenicity and bring us closer to the safe use of this drug.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/patologia , Mesoderma/patologia , Teratogênicos/farmacologia , Talidomida/farmacologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mesoderma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...