Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(9): ar87, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314856

RESUMO

Proper balance of exocytosis and endocytosis is important for the maintenance of plasma membrane lipid and protein homeostasis. This is especially critical in human podocytes and the podocyte-like Drosophila nephrocytes that both use a delicate diaphragm system with evolutionarily conserved components for ultrafiltration. Here, we show that the sorting nexin 25 homologue Snazarus (Snz) binds to Rab11 and localizes to Rab11-positive recycling endosomes in Drosophila nephrocytes, unlike in fat cells where it is present in plasma membrane/lipid droplet/endoplasmic reticulum contact sites. Loss of Snz leads to redistribution of Rab11 vesicles from the cell periphery and increases endocytic activity in nephrocytes. These changes are accompanied by defects in diaphragm protein distribution that resemble those seen in Rab11 gain-of-function cells. Of note, co-overexpression of Snz rescues diaphragm defects in Rab11 overexpressing cells, whereas snz knockdown in Rab11 overexpressing nephrocytes or simultaneous knockdown of snz and tbc1d8b encoding a Rab11 GTPase-activating protein (GAP) leads to massive expansion of the lacunar system that contains mislocalized diaphragm components: Sns and Pyd/ZO-1. We find that loss of Snz enhances while its overexpression impairs secretion, which, together with genetic epistasis analyses, suggest that Snz counteracts Rab11 to maintain the diaphragm via setting the proper balance of exocytosis and endocytosis.


Assuntos
Proteínas de Drosophila , Animais , Humanos , Proteínas de Drosophila/metabolismo , Nexinas de Classificação/metabolismo , Diafragma/metabolismo , Ultrafiltração , Drosophila/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endocitose , Endossomos/metabolismo
2.
Biol Futur ; 73(2): 149-155, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35507305

RESUMO

Lysosomal degradation of cytoplasmic components by autophagy ensures the continuous turnover of proteins and organelles and aids cellular survival during nutrient deprivation and other stress conditions. Lysosomal targeting of cytoplasmic proteins and organelles requires the concerted action of several proteins and multisubunit complexes. The core components of this machinery are conserved from yeast to humans and many of them are well-characterized; however, novel molecular players have been recently discovered and are waiting for detailed analysis. The osteopetrosis-linked PLEKHM1 protein is a lysosomal adaptor involved in autophagosome and endosome to lysosome fusion events and its role in lysosomal positioning in osteoclasts was reported together with its proposed binding partner, the relatively uncharacterized DEF8 protein. Here, we report the generation and subsequent analysis of novel mutant alleles of Drosophila plekhm1 and def8. Interestingly, the CRISPR-generated null mutations of these genes do not have any obvious effects on autophagy in Drosophila tissues, even though RNAi knockdown of these genes seems to perturb autophagy. Although these results are quite surprising and raise the possibility of compensatory changes in the case of null mutants, the new alleles will be valuable tools in future studies to understand the cellular functions of Drosophila Plekhm1 and Def8 proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Drosophila , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Proteínas Relacionadas à Autofagia/genética , Drosophila/genética , Glicoproteínas de Membrana/genética
3.
Life Sci Alliance ; 4(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33318080

RESUMO

Hunger drives food-seeking behaviour and controls adaptation of organisms to nutrient availability and energy stores. Lipids constitute an essential source of energy in the cell that can be mobilised during fasting by autophagy. Selective degradation of proteins by autophagy is made possible essentially by the presence of LIR and KFERQ-like motifs. Using in silico screening of Drosophila proteins that contain KFERQ-like motifs, we identified and characterized the adaptor protein Arouser, which functions to regulate fat storage and mobilisation and is essential during periods of food deprivation. We show that hypomorphic arouser mutants are not satiated, are more sensitive to food deprivation, and are more aggressive, suggesting an essential role for Arouser in the coordination of metabolism and food-related behaviour. Our analysis shows that Arouser functions in the fat body through nutrient-related signalling pathways and is degraded by endosomal microautophagy. Arouser degradation occurs during feeding conditions, whereas its stabilisation during non-feeding periods is essential for resistance to starvation and survival. In summary, our data describe a novel role for endosomal microautophagy in energy homeostasis, by the degradation of the signalling regulatory protein Arouser.


Assuntos
Adaptação Fisiológica , Drosophila/fisiologia , Endossomos/metabolismo , Microautofagia , Inanição , Animais , Cromatografia Líquida , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Nutrientes/metabolismo , Proteoma , Proteômica/métodos , Serina-Treonina Quinases TOR/metabolismo , Espectrometria de Massas em Tandem
4.
Cell Death Differ ; 27(5): 1677-1692, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31740789

RESUMO

Autophagy ensures the turnover of cytoplasm and requires the coordinated action of Atg proteins, some of which also have moonlighting functions in higher eukaryotes. Here we show that the transmembrane protein Atg9 is required for female fertility, and its loss leads to defects in actin cytoskeleton organization in the ovary and enhances filopodia formation in neurons in Drosophila. Atg9 localizes to the plasma membrane anchor points of actin cables and is also important for the integrity of the cortical actin network. Of note, such phenotypes are not seen in other Atg mutants, suggesting that these are independent of autophagy defects. Mechanistically, we identify the known actin regulators profilin and Ena/VASP as novel binding partners of Atg9 based on microscopy, biochemical, and genetic interactions. Accordingly, the localization of both profilin and Ena depends on Atg9. Taken together, our data identify a new and unexpected role for Atg9 in actin cytoskeleton regulation.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Profilinas/metabolismo , Alelos , Animais , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Feminino , Fertilidade , Proteínas de Membrana/genética , Mutação/genética , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Pseudópodes/metabolismo , Transgenes
5.
Front Cell Dev Biol ; 7: 140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396511

RESUMO

Autophagy ensures the lysosome-mediated breakdown and recycling of self-material, as it not only degrades obsolete or damaged intracellular constituents but also provides building blocks for biosynthetic and energy producing reactions. Studies in animal models including Drosophila revealed that autophagy defects lead to the rapid decline of neuromuscular function, neurodegeneration, sensitivity to stress (such as starvation or oxidative damage), and stem cell loss. Of note, recently identified human Atg gene mutations cause similar symptoms including ataxia and mental retardation. Physiologically, autophagic degradation (flux) is known to decrease during aging, and this defect likely contributes to the development of such age-associated diseases. Many manipulations that extend lifespan (including dietary restriction, reduced TOR kinase signaling, exercise or treatment with various anti-aging substances) require autophagy for their beneficial effect on longevity, pointing to the key role of this housekeeping process. Importantly, genetic (e.g., Atg8a overexpression in either neurons or muscle) or pharmacological (e.g., feeding rapamycin or spermidine to animals) promotion of autophagy has been successfully used to extend lifespan in Drosophila, suggesting that this intracellular degradation pathway can rejuvenate cells and organisms. In this review, we highlight key discoveries and recent progress in understanding the relationship of autophagy and aging in Drosophila.

6.
Elife ; 52016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253064

RESUMO

Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Complexos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Hemócitos/metabolismo , Complexos Multiproteicos/genética , Néfrons/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
7.
Traffic ; 16(10): 1088-107, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26172538

RESUMO

The retromer is an evolutionarily conserved coat complex that consists of Vps26, Vps29, Vps35 and a heterodimer of sorting nexin (Snx) proteins in yeast. Retromer mediates the recycling of transmembrane proteins from endosomes to the trans-Golgi network, including receptors that are essential for the delivery of hydrolytic enzymes to lysosomes. Besides its function in lysosomal enzyme receptor recycling, involvement of retromer has also been proposed in a variety of vesicular trafficking events, including early steps of autophagy and endocytosis. Here we show that the late stages of autophagy and endocytosis are impaired in Vps26 and Vps35 deficient Drosophila larval fat body cells, but formation of autophagosomes and endosomes is not compromised. Accumulation of aberrant autolysosomes and amphisomes in the absence of retromer function appears to be the consequence of decreased degradative capacity, as they contain undigested cytoplasmic material. Accordingly, we show that retromer is required for proper cathepsin L trafficking mainly independent of LERP, the Drosophila homolog of the cation-independent mannose 6-phosphate receptor. Finally, we find that Snx3 and Snx6 are also required for proper autolysosomal degradation in Drosophila larval fat body cells.


Assuntos
Autofagia/fisiologia , Drosophila/metabolismo , Lisossomos/metabolismo , Nexinas de Classificação/metabolismo , Animais , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Citoplasma/fisiologia , Drosophila/fisiologia , Endocitose/fisiologia , Endossomos/metabolismo , Endossomos/fisiologia , Corpo Adiposo/metabolismo , Corpo Adiposo/fisiologia , Lisossomos/fisiologia , Transporte Proteico/fisiologia , Vacúolos/metabolismo , Vacúolos/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/fisiologia
8.
Biomed Res Int ; 2014: 851349, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25006588

RESUMO

Atg6 (Beclin 1 in mammals) is a core component of the Vps34 PI3K (III) complex, which promotes multiple vesicle trafficking pathways. Atg6 and Vps34 form two distinct PI3K (III) complexes in yeast and mammalian cells, either with Atg14 or with UVRAG. The functions of these two complexes are not entirely clear, as both Atg14 and UVRAG have been suggested to regulate both endocytosis and autophagy. In this study, we performed a microscopic analysis of UVRAG, Atg14, or Atg6 loss-of-function cells in the developing Drosophila wing. Both autophagy and endocytosis are seriously impaired and defective endolysosomes accumulate upon loss of Atg6. We show that Atg6 is required for the downregulation of Notch and Wingless signaling pathways; thus it is essential for normal wing development. Moreover, the loss of Atg6 impairs cell polarity. Atg14 depletion results in autophagy defects with no effect on endocytosis or cell polarity, while the silencing of UVRAG phenocopies all but the autophagy defect of Atg6 depleted cells. Thus, our results indicate that the UVRAG-containing PI3K (III) complex is required for receptor downregulation through endolysosomal degradation and for the establishment of proper cell polarity in the developing wing, while the Atg14-containing complex is involved in autophagosome formation.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Células Epiteliais/citologia , Lisossomos/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Autofagia , Proteína Beclina-1 , Regulação para Baixo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Fosfatidilinositol 3-Quinases/metabolismo , Pupa/ultraestrutura , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Asas de Animais/citologia , Asas de Animais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...