Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oleo Sci ; 70(3): 397-407, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33583923

RESUMO

The fluoroquinolone antibiotic drug namely ciprofloxacin hydrochloride (CFH) is widely prescribed for the treatment of different bacterial infections. The interaction of CFH with a synthetic polymer, polyvinyl pyrrolidone (PVP), and biopolymer, bovine serum albumin (BSA) was studied by UVvisible and fluorescence spectroscopic methods at different temperatures. The binding constant (K b ) for the CFH-PVP complex was determined from the Benesi-Hildebrand plot. PVP of different molecular weights (MW) (such as 24,000, 40,000, 360,000, and 700,000 g. mole-1) were used for the interaction between CFH and PVP. The gradual increase in K b value and the complexation reaction was found to be much enhanced with the augmentation of the MW of PVP. The values of K b were also found to be increased with increasing temperatures as well as with the increase of electrolyte/acetic acid concentration. The Gibbs free energy of binding (∆G 0) values of the interaction process was negative which indicates the complex formation is thermodynamically spontaneous. The positive values of enthalpy (∆H 0) and entropy (∆S 0) of binding connote that the binding force for CFH-PVP complexation is hydrophobic in nature and the complexation is entropy controlled. The negative intrinsic enthalpy (∆H *,0) values indicate the high stability of CFH-PVP complexes. Molecular docking calculation discloses the existence of similar binding forces between CFH and PVP obtained by the analysis of experimental data from UV-visible spectroscopic method. The binding constant between CFH and BSA (K b ), quenching constant (K sv ), the number of binding sites (n), and the quenching rate constant (K q ) for the CFH-BSA system were also calculated. The values of K sv , K q , and n for the CFH-BSA system are lower in 0.05 mol L-1 urea solution and higher in PVP solutions compared to those of aqueous medium.


Assuntos
Antibacterianos/química , Biopolímeros/química , Ciprofloxacina/química , Simulação de Acoplamento Molecular/métodos , Povidona/análogos & derivados , Soroalbumina Bovina/química , Análise Espectral/métodos , Temperatura , Ácido Acético/química , Interações Medicamentosas , Eletrólitos/química , Peso Molecular , Povidona/química , Soluções , Termodinâmica
2.
Bioorg Med Chem ; 26(2): 340-355, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29269253

RESUMO

Cancer is one of the leading groups of threatened caused by abnormal state cell growth and second leading diseases involved in the major global death. To treat this, research looking for promising anticancer drugs from natural resource, or synthesized novel molecules by diverse group of scientists worldwide. Currently, drugs get into clinical practices and showing side effects with target actions which in turn leading to multidrug resistance unknowingly. Podophyllotoxin, a naturally occurring lignan and with hybrids have become one of the most attractive subjects due to their broad spectrum of pharmacological activities. Podophyllotoxin derivatives have been the centre of attention of extensive chemical amendment and pharmacological investigation in modern decades. Mainly, the innovation of the semi-synthetic anticancer drugs etoposide and teniposide has stimulated prolonged research interest in this structural phenotype. The present review focuses mainly onnew anticancer drugs from podophyllotoxin analogs, mechanism of action and their structure-activity relationships (SAR) as potential anticancer candidates for future discovery of suitable drug candidates.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Podofilotoxina/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Neoplasias/patologia , Podofilotoxina/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA