Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279444

RESUMO

The Omicron sub-lineages BA.4 and BA.5 were first detected in England in April 2022. A case surge followed despite England having recently experienced waves with BA.1 and BA.2. This study used a whole population test-negative case-control study design to estimate the effectiveness of the vaccines currently in use as part of the UK COVID-19 vaccination programme against hospitalisation following infection with BA.4 and BA.5 as compared to BA.2 during a period of co-circulation. Incremental VE was estimated in those vaccinated with either a third or fourth dose as compared to individuals with waned immunity who had received their second dose at least 25 weeks prior. Vaccination status was included as an independent variable and effectiveness was defined as 1-odds of vaccination in cases/odds of vaccination in controls. During the study period, there were 32,845 eligible tests from hospitalised individuals. Of these, 25,862 were negative (controls), 3,432 were BA.2, 273 were BA.4, 947 were BA.5 and 2,331 were either BA.4 or BA.5 cases. There was no evidence of reduced VE against hospitalisation for BA.4 or BA.5 as compared to BA.2. The incremental VE was 56.8% (95% C.I.; 24.0-75.4%), 59.9% (95% C.I.; 45.6-70.5%) and 52.4% (95% C.I.; 43.2-60.1%) for BA.4, BA.5 and BA.2, respectively, at 2 to 14 weeks after a third or fourth dose. VE against hospitalisation with BA.4/5 or BA.2 was slightly higher for the mRNA-1273 booster than the BNT162b2 booster at all time-points investigated, but confidence intervals overlapped. These data provide reassuring evidence of the protection conferred by the current vaccines against severe disease with BA.4 and BA.5.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278987

RESUMO

BackgroundLittle is known about the protection following prior infection with different SARS-CoV-2 variants, COVID-19 vaccination, and a combination of the two (hybrid immunity) in adolescents. MethodsWe used national SARS-CoV-2 testing and COVID-19 mRNA vaccination data in England to estimate protection following previous infection and vaccination against symptomatic PCR-confirmed delta and omicron BA.1/BA.2 variants in 11-17-year-olds using a test-negative case-control design. FindingsBy 31 March 2022, 63.6% of 16-17-year-olds and 48.2% of 12-15-year-olds had received [≥]1 COVID-19 mRNA vaccine dose.Between 08 August 2021 and 31 March 2022, 1,161,704 SARS-CoV-2 PCR-tests were successfully linked to COVID-19 vaccination status. In unvaccinated adolescents, prior infection with wildtype, alpha or delta provided greater protection against subsequent delta infection than subsequent omicron; prior omicron infection provided had the highest protection against omicron reinfection (59.3%; 95%CI: 46.7-69.0). In infection-naive adolescents, vaccination provided lower protection against symptomatic omicron infection than delta, peaking at 64.5% (95%CI; 63.6-65.4) 2-14 days after dose two and 62.9% (95%CI; 60.5-65.1) 2-14 weeks after dose three, with rapidly waning protection after each dose. Previously infected and vaccinated adolescents had the highest protection, irrespective of primary infecting SARS-CoV-2 strain. The highest protection against omicron was observed in vaccinated adolescents with prior omicron infection, reaching 96.4% (95%CI, 84.4-99.1) at 15-24 weeks post dose two. InterpretationAll variants provide some protection against symptomatic reinfection and vaccination adds to protection. Vaccination provides low-to-moderate protection against symptomatic omicron infection, with waning protection after each dose, while hybrid immunity provides the most robust protection. FundingNone Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe have previously reported COVID-19 vaccine effectiveness in previously uninfected adolescents. There are, however, limited data on the protection offered by natural infection with different SARS-CoV-2 variants, and the added value of vaccination in previously-infected adolescents. Most studies have focused on adults and show significant protection from previous infection against re-infection with pre-omicron variants, but lower protection against omicron variants, with hybrid immunity providing the most robust protection. Added value of this studyUsing national SARS-CoV-2 testing and COVID-19 mRNA vaccination data in England, we were able to estimate protection afforded by previous infection, vaccination, and a combination of the two using a test-negative case-control design against PCR-confirmed symptomatic COVID-19. We found that protection against symptomatic infection with the delta variant was greater than protection against symptomatic omicron infection in those previously infected with wild-type, alpha or delta variants. Similar trends were observed in previously uninfected but vaccinated individuals. Prior omicron infection along with vaccination provided the greatest protection against further omicron variant infections. Implications of all the available evidenceAll variants provide some protection against future SARS-CoV-2 infection, as does COVID-19 mRNA vaccination. Our findings demonstrate, for the first time in adolescents, the additional protection afforded by hybrid immunity. In the context of the UKs recent waves of omicron infections, our findings provide important evidence of only modest short-term protection against mild disease with omicron variants following vaccination. This has important implications for the consideration of future adolescent COVID-19 vaccination and booster programmes.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-501570

RESUMO

The Omicron variant of SARS-CoV-2 is now globally dominant but despite high prevalence little is known regarding the immune response in children. We determined the antibody and cellular immune response following Omicron infection in children aged 6-14 years and related this to prior SARS-CoV-2 infection and vaccination status. Primary Omicron infection elicited a weak antibody response and only 53% of children developed detectable neutralising antibodies. In contrast, children with secondary Omicron infection following prior infection with a pre-Omicron variant developed 24-fold higher antibody titres and neutralisation of Omicron. Vaccination elicited the highest levels of antibody response and was also strongly immunogenic following prior natural infection with Omicron. Cellular responses against Omicron were robust and broadly equivalent in all study groups. These data reveal that primary Omicron infection elicits a weak humoral immune response in children and may presage a clinical profile of recurrent infection as seen with antecedent seasonal coronaviruses. Vaccination may represent the most effective approach to control infection whilst cellular immunity should offer strong clinical protection.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274483

RESUMO

BackgroundDespite the potential widespread global use of the ChAdOx1-S booster, to date there are no published data on the real-world effectiveness. VE studies have found one and two doses of the ChAdOx1-S vaccine to be highly effective, and clinical trial data have demonstrated enhanced immunity following a ChAdOx1-S booster. In England, some individuals received a ChAdOx1-S booster where vaccination with mRNA vaccines was clinically contraindicated. MethodsThe demographic characteristics of those who received a ChAdOx1-S booster were compared to those who received a BNT162b2 booster. A test-negative case control design was used to estimate vaccine effectiveness of the ChAdOx1-S booster against symptomatic disease and hospitalisation in England. FindingsThose who received a ChAdOx1-S booster were more likely to be female (adjusted odds ratio (OR) 1.67 (1.64-1.71)), in a clinical risk group (adjusted OR 1.58 (1.54-1.63)), in the CEV group (adjusted OR 1.84 (1.79-1.89)) or severely immunosuppressed (adjusted OR 2.05 (1.96-2.13)). Protection against symptomatic disease in those aged 65 years and older peaked at 66.1% (16.6 to 86.3%) and 68.5% (65.7 to 71.2%) amongst those who received the ChAdOx1-S and BNT162b2 booster vaccines, respectively. Protection waned to 44.5% (22.4 to 60.2%) and 54.1% (50.5 to 57.5%) after 5-9 weeks. Protection against hospitalisation following Omicron infection peaked at 82.3% (64.2 to 91.3%) after receiving a ChAdOx1-S booster, as compared to 90.9% (88.7 to 92.7%) for those who received a BNT162b2 booster. InterpretationDifferences in the population boosted with ChAdOx1-S in England renders direct comparison of vaccine effectiveness by manufacturer challenging. Nonetheless, this study supports the use of the ChAdOx1-S booster for protection against severe disease with COVID-19 in settings that have not yet offered booster doses and suggests that those who received ChAdOx1-S as a booster in England do not require re-vaccination ahead of others. FundingUKHSA

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273281

RESUMO

BackgroundThe omicron (B.1.1.529) variant has been associated with reduced vaccine effectiveness (VE) against infection and mild disease with rapid waning, even after a third dose, nevertheless omicron has also been associated with milder disease than previous variants. With previous variants protection against severe disease has been substantially higher than protection against infection. MethodsWe used a test-negative case-control design to estimate VE against hospitalisation with the omicron and delta variants using community and in hospital testing linked to hospital records. As a milder disease, there may be an increasing proportion of hospitalised individuals with Omicron as an incidental finding. We therefore investigated the impact of using more specific and more severe hospitalisation indicators on VE. ResultsAmong 18-64 year olds using all Covid-19 cases admitted via emergency care VE after a booster peaked at 82.4% and dropped to 53.6% by 15+ weeks after the booster; using all admissions for >= 2 days stay with a respiratory code in the primary diagnostic field VE ranged from 90.9% down to 67.4%; further restricting to those on oxygen/ventilated/on intensive care VE ranged from 97.1% down to 75.9%. Among 65+ year olds the equivalent VE estimates were 92.4% down to 76.9%; 91.3% down to 85.3% and 95.8% down to 86.8%. ConclusionsWith generally milder disease seen with Omicron, in particular in younger adults, contamination of hospitalisations with incidental cases is likely to reduce VE estimates against hospitalisation. VE estimates improve and waning and waning is more limited when definitions of hospitalisation that are more specific to severe respiratory disease are used.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272691

RESUMO

The BA.1 sub-lineage of the Omicron (B.1.1.529) variant, first detected in the UK in mid-November 2021, rapidly became the dominant strain partly due to reduced vaccine effectiveness. An increase in a second Omicron sub-lineage BA.2 was observed in early January 2022. In this study we use a test-negative case control study design to estimate vaccine effectiveness against symptomatic disease with BA.1 and BA.2 after one or two doses of BNT162b2, ChAdOx1-S or mRNA-1273, and after booster doses of BNT162b2 or mRNA-1273 during a period of co-circulation. Overall, there was no evidence that vaccine effectiveness against symptomatic disease is reduced following infection with the BA.2 sub-lineage as compared to BA.1. Furthermore, similar rates of waning were observed after the second and booster dose for each sub-lineage. These data provide reassuring evidence of the effectiveness of the vaccines currently in use against symptomatic disease caused by BA.2.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267615

RESUMO

BackgroundA rapid increase in cases due to the SARS-CoV-2 Omicron (B.1.1.529) variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines. MethodsWe used a test-negative case-control design to estimate vaccine effectiveness (VE) against symptomatic disease caused by the Omicron and Delta variants in England. VE was calculated after primary immunisation with two BNT162b2 or ChAdOx1 doses, and at 2+ weeks following a BNT162b2 booster. ResultsBetween 27 November and 06 December 2021, 581 and 56,439 eligible Omicron and Delta cases respectively were identified. There were 130,867 eligible test-negative controls. There was no effect against Omicron from 15 weeks after two ChAdOx1 doses, while VE after two BNT162b2 doses was 88.0% (95%CI: 65.9 to 95.8%) 2-9 weeks after dose 2, dropping to between 34 and 37% from 15 weeks post dose 2.From two weeks after a BNT162b2 booster, VE increased to 71.4% (95%CI: 41.8 to 86.0%) for ChAdOx1 primary course recipients and 75.5% (95%CI: 56.1 to 86.3%) for BNT162b2 primary course recipients. For cases with Delta, VE was 41.8% (95%CI: 39.4-44.1%) at 25+ weeks after two ChAdOx1 doses, increasing to 93.8% (95%CI: 93.2-94.3%) after a BNT162b2 booster. With a BNT162b2 primary course, VE was 63.5% (95%CI: 61.4 to 65.5%) 25+ weeks after dose 2, increasing to 92.6% (95%CI: 92.0-93.1%) two weeks after the booster. ConclusionsPrimary immunisation with two BNT162b2 or ChAdOx1 doses provided no or limited protection against symptomatic disease with the Omicron variant. Boosting with BNT162b2 following either primary course significantly increased protection.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266341

RESUMO

BackgroundIn September 2021, the UK Government introduced a booster programme targeting individuals over 50 and those in a clinical risk group. Individuals were offered either a full dose of the BNT162b2 (Comirnaty, Pfizer-BioNTech) vaccine or a half dose of the mRNA-1273 (Spikevax, Moderna) vaccine, irrespective of the vaccine received as the primary course MethodsWe used a test-negative case-control design to estimate the Vaccine Effectiveness (VE) of the booster dose BNT162b2 (Comirnaty, Pfizer-BioNTech) in those aged over 50 against symptomatic disease in post booster time intervals compared to individuals at least 140 days post a second dose with no booster dose recorded. In a secondary analysis, we also compared to unvaccinated individuals and to the 2 to 6 day period after a booster dose was received. Analyses were stratified by which primary doses had been received and any mixed primary courses were excluded. ResultsThe relative VE estimate in the 14 days after the BNT162b2 (Comirnaty, Pfizer-BioNTech) booster dose, compared to individuals that received a two-dose primary course, was 87.4 (95% confidence interval 84.9-89.4) in those individuals who received two doses ChAdOx1-S (Vaxzevria, AstraZeneca) as a primary course and 84.4 (95% confidence interval 82.8-85.8) in those individuals who received two doses of BNT162b2 (Comirnaty, Pfizer-BioNTech) as a primary course. Using the 2-6 day period post the booster dose as the baseline gave similar results. The absolute VE from 14 days after the booster, using the unvaccinated baseline, was 93.1(95% confidence interval 91.7-94.3) in those with ChAdOx1-S (Vaxzevria, AstraZeneca) as their primary course and 94.0 (93.4-94.6) for BNT162b2 (Comirnaty, Pfizer-BioNTech) as their primary course. ConclusionsOur study provides real world evidence of significant increased protection from the booster vaccine dose against symptomatic disease in those aged over 50 year of age irrespective of which primary course was received.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264701

RESUMO

BackgroundThis study measured the long-term health-related quality of life of non-hospitalised COVID-19 cases with PCR-confirmed SARS-CoV-2(+) infection using the recommended instrument in England (the EQ-5D). MethodsProspective cohort study of SARS-CoV-2(+) cases aged 12-85 years and followed up for six months from 01 December 2020, with cross-sectional comparison to SARS-CoV-2(-) controls. Main outcomes were loss of quality-adjusted life days (QALDs); physical symptoms; and COVID-19-related private expenditures. We analysed results using multivariable regressions with post-hoc weighting by age and sex, and conditional logistic regressions for the association of each symptom and EQ-5D limitation on cases and controls. ResultsOf 548 cases (mean age 41.1 years; 61.5% female), 16.8% reported physical symptoms at month 6 (most frequently extreme tiredness, headache, loss of taste and/or smell, and shortness of breath). Cases reported more limitations with doing usual activities than controls. Almost half of cases spent a mean of {pound}18.1 on non-prescription drugs (median: {pound}10.0), and 52.7% missed work or school for a mean of 12 days (median: 10). On average, all cases lost 15.9 (95%-CI: 12.1, 19.7) QALDs, while those reporting symptoms at month 6 lost 34.1 (29.0, 39.2) QALDs. Losses also increased with older age. Cumulatively, the health loss from morbidity contributes at least 21% of the total COVID-19-related disease burden in England. ConclusionsOne in 6 cases report ongoing symptoms at 6 months, and 10% report prolonged loss of function compared to pre-COVID-19 baselines. A marked health burden was observed among older COVID-19 cases and those with persistent physical symptoms. summaryLosses of health-related quality of life in non-hospitalised COVID-19 cases increase by age and for cases with symptoms after 6 months. At a population level, at least 21% of the total COVID-19-related disease burden in England is attributable to morbidity.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263578

RESUMO

In England, the National Immunisation Management System (NIMS) has been used to deliver COVID-19 vaccinations across England, monitor vaccine coverage, and assess vaccine effectiveness and safety. The NIMS was developed by a joint collaboration between a range of health and digital government agencies. Vaccinations delivered at large vaccination sites, pharmacies, hospitals and in primary care are entered on a point of care application which is verified using the unique NHS number in a centralised system containing information for everyone resident and registered with a GP in England. Vaccination details and additional data from hospital and GP records (such as priority groups) are sent to NHS Digital for data linkage. The NIMS constantly receives updated details from NHS Digital for all individuals and these data are provided to Public Health England (PHE) in a secure environment. PHE primarily use the NIMS for vaccine coverage, vaccine effectiveness and safety. Daily access to individual-level vaccine data has allowed PHE to rapidly and accurately estimate vaccine coverage and provide some of the worlds first vaccine effectiveness estimates. Other countries evaluating the roll-out and effect of COVID-19 vaccine programmes should consider a vaccine register or immunisation information system similar to the NIMS.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263583

RESUMO

BackgroundCOVID-19 vaccines have been used for 9 months in the UK. Real world data have demonstrated the vaccines to be highly effective against COVID-19, severe disease and death. Here, we estimate vaccine effectiveness over time since the second dose of Comirnaty, Vaxzevria and Spikevax in England. MethodsWe used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease, hospitalisation and mortality by age, comorbidity status and over time after the second dose to investigate waning separately for Alpha and Delta variants. ResultsVaccine effectiveness against symptomatic disease peaked in the early weeks after the second dose and then fell to 47.3 (95% CI 45 to 49.6) and 69.7 (95% CI 68.7 to 70.5) by 20+ weeks against the Delta variant for Vaxzevria and Comirnaty, respectively. Waning of vaccine effectiveness was greater for 65+ year-olds compared to 40-64 year-olds. Vaccine effectiveness fell less against hospitalisations to 77.0 (70.3 to 82.3) and 92.7 (90.3 to 94.6) beyond 20 weeks post-vaccination and 78.7 (95% CI 52.7 to 90.4) and 90.4 (95% CI 85.1 to 93.8) against death for Vaxzevria and Comirnaty, respectively. Greater waning was observed among 65+ year-olds in a clinically extremely vulnerable group and 40-64-year olds with underlying medical conditions compared to healthy adults. ConclusionsWe observed limited waning in vaccine effectiveness against hospitalisation and death more than 20 weeks post-vaccination with Vaxzevria or Comirnaty. Waning was greater in older adults and those in a clinical risk group, suggesting that these individuals should be prioritised for booster doses.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262422

RESUMO

ObjectiveTo determine characteristics associated with COVID-19 vaccine coverage among individuals aged 50 years and above in England since the beginning of the programme. DesignObservational cross-sectional study assessed by logistic regression and mean prevalence margins. SettingCOVID-19 vaccinations delivered in England from 08 December 2020 - 17 May 2021. Participants30,624,257/ 61,967,781 (49.4%) and 17,360,045/ 61,967,781 (28.1%) individuals in England were recorded as vaccinated in the National Immunisation Management System with a first dose and a second dose of a COVID-19 vaccine, respectively. InterventionsVaccination status with COVID-19 vaccinations. Main Outcome MeasuresProportion, adjusted odds ratios and mean prevalence margins for individuals not vaccinated with dose 1 among those aged 50-69 years old and dose 1 and 2 among those aged 70 years old and above. ResultsAmong individuals aged 50 years and above, Black/African/Caribbean ethnic group was the least likely of all ethnic groups to be vaccinated with dose 1 of the COVID-19 vaccine. However, among those aged 70 years and above, the odds of not having dose 2 was 5.53 (95% CI 5.42 to 5.63) and 5.36 (90% CI 5.29 to 5.43) greater among Pakistani and Black/African/Caribbean compared to White British ethnicity, respectively. The odds of not receiving dose 2 was 1.18 (95% CI 1.16 to 1.20) higher among individuals who lived in a care home compared to those who did not. This was the opposite to that observed for dose 1, where the odds of not being vaccinated was significantly higher among those not living in a care home (0.89 (95% CI 0.87 to 0.91)). ConclusionsWe found that there are characteristics associated with low COVID-19 vaccine coverage. Inequalities, such as ethnicity are a major contributor to suboptimal coverage and tailored interventions are required to improve coverage and protect the population from SARS-CoV-2. Article summaryO_ST_ABSStrengths and Limitations of this studyC_ST_ABSO_LIThis is the is the first study assessing characteristics associated with COVID-19 vaccine coverage for all individuals aged 50 years and above in England. C_LIO_LIThis study uses data from the National Immunisation Management System (NIMS) which is based on all individuals in England with a registered NHS number. C_LIO_LIThis centralised national system captures individual level data for both vaccination status and demographic characteristics and allows for linkage to other datasets such as health care worker and care home resident status. C_LIO_LIThis study does not include those without an NHS number and, therefore, it is possible we have underestimated the number of vaccines delivered and odds of not being vaccinated for characteristics such as ethnic groups where we have seen the greatest impact. C_LIO_LIResidual errors in data entry on the point of care apps at the vaccination sites may have also occurred, though these errors are not likely to be widespread. C_LI

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257658

RESUMO

BackgroundThe B.1.617.2 COVID-19 variant has contributed to the surge in cases in India and has now been detected across the globe, including a notable increase in cases in the UK. We estimate the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against this variant. MethodsA test negative case control design was used to estimate the effectiveness of vaccination against symptomatic disease with both variants over the period that B.1.617.2 began circulating with cases identified based on sequencing and S-gene target status. Data on all symptomatic sequenced cases of COVID-19 in England was used to estimate the proportion of cases with B.1.617.2 compared to the predominant strain (B.1.1.7) by vaccination status. ResultsEffectiveness was notably lower after 1 dose of vaccine with B.1.617.2 cases 33.5% (95%CI: 20.6 to 44.3) compared to B.1.1.7 cases 51.1% (95%CI: 47.3 to 54.7) with similar results for both vaccines. With BNT162b2 2 dose effectiveness reduced from 93.4% (95%CI: 90.4 to 95.5) with B.1.1.7 to 87.9% (95%CI: 78.2 to 93.2) with B.1.617.2. With ChAdOx1 2 dose effectiveness reduced from 66.1% (95% CI: 54.0 to 75.0) with B.1.1.7 to 59.8% (95%CI: 28.9 to 77.3) with B.1.617.2. Sequenced cases detected after 1 or 2 doses of vaccination had a higher odds of infection with B.1.617.2 compared to unvaccinated cases (OR 1.40; 95%CI: 1.13-1.75). ConclusionsAfter 2 doses of either vaccine there were only modest differences in vaccine effectiveness with the B.1.617.2 variant. Absolute differences in vaccine effectiveness were more marked with dose 1. This would support maximising vaccine uptake with two doses among vulnerable groups.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257218

RESUMO

We estimated risk of death in vaccinated compared to unvaccinated COVID-19 cases. Cases vaccinated with 1 dose of BNT162b2 had 44% reduced risk of death, 55% with 1 dose of ChAdOx1, and 69% with 2 doses of BNT162b2. This is on top of the protection provided against becoming a case.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255275

RESUMO

SARS-CoV-2 infection is generally mild or asymptomatic in children but the biological basis for this is unclear. We studied the profile of antibody and cellular immunity in children aged 3-11 years in comparison with adults. Antibody responses against spike and receptor binding domain (RBD) were high in children and seroconversion boosted antibody responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Seroneutralisation assays against alpha, beta and delta SARS-CoV-2 variants demonstrated comparable neutralising activity between children and adults. T cell responses against spike were >2-fold higher in children compared to adults and displayed a TH1 cytokine profile. SARS-CoV-2 spike-specific T cells were also detected in many seronegative children, revealing pre-existing responses that were cross-reactive with seasonal Alpha and Beta-coronaviruses. Importantly, all children retained high antibody titres and cellular responses at 6 months after infection whilst relative antibody waning was seen in adults. Spike-specific responses in children also remained broadly stable beyond 12 months. Children thus distinctly generate robust, cross-reactive and sustained immune responses after SARS-CoV-2 infection with focussed specificity against spike protein. These observations demonstrate novel features of SARS-CoV-2-specific immune responses in children and may provide insight into their relative clinical protection. Furthermore, this information will help to guide the introduction of vaccination regimens in the paediatric population.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252652

RESUMO

ObjectivesTo estimate the real-world effectiveness of the Pfizer/BioNTech BNT162b2 vaccine and Astrazeneca ChAdOx1 vaccine against Confirmed COVID-19, hospitalisations and deaths. To estimate effectiveness on the UK variant of concern. DesignTest negative case control design SettingCommunity COVID-19 PCR testing in England ParticipantsAll adults in England aged 70 years and older (over 7.5 million). All COVID-19 testing in the community among eligible individuals who reported symptoms between 8th December 2020 and 19th February 2021 was included in the analysis. InterventionsOne and two doses of BNT162b2 vaccine. One dose of ChAdOx1 vaccine. Main outcome measuresSymptomatic PCR confirmed SARS-CoV-2 infection, hospitalisations and deaths with COVID-19. ResultsIndividuals aged >=80 years vaccinated with BNT162b2 prior to 4th January, had a higher odds of testing positive in the first 9 days after vaccination (odds ratio up to 1.48, 95%CI 1.23-1.77), indicating that those initially targeted had a higher underlying risk of infection. Vaccine effectiveness was therefore estimated relative to the baseline post-vaccination period. Vaccine effects were noted from 10-13 days after vaccination, reaching an effectiveness of 70% (95% CI 59-78%) from 28-34 days, then plateauing. From 14 days after the second dose a vaccine effectiveness of 89% (95%CI: 85-93%) was seen. Individuals aged >=70 years vaccinated from 4th January had a similar underlying risk of COVID-19 to unvaccinated individuals. With BNT162b2, vaccine effectiveness reached 61% (95%CI 51-69%) from 28-34 days after vaccination then plateaued. With the ChAdOx1 vaccine, vaccine effects were seen from 14-20 days after vaccination reaching an effectiveness of 60% (95%CI 41-73%) from 28-34 days and further increasing to 73% (95%CI 27-90%) from day 35 onwards. On top of the protection against symptomatic disease, cases who had been vaccinated with one dose of BNT162b2 had an additional 43% (95%CI 33-52%) lower risk of emergency hospitalisation and an additional 51% (95%CI 37-62%) lower risk of death. Cases who had been vaccinated with one dose of ChAdOx1 had an additional 37% (95% CI 3-59%) lower risk of emergency hospitalisation. There was insufficient follow-up to assess the effect of ChAdOx1 on mortality due to the later rollout of this vaccine. Combined with the effect against symptomatic disease, this indicates that a single dose of either vaccine is approximately 80% effective at preventing hospitalisation and a single dose of BNT162b2 is 85% effective at preventing death with COVID-19. ConclusionVaccination with either a single dose of BNT162b2 or ChAdOx1 COVID-19 vaccination was associated with a significant reduction in symptomatic SARS-CoV2 positive cases in older adults with even greater protection against severe disease. Both vaccines show similar effects. Protection was maintained for the duration of follow-up (>6 weeks). A second dose of BNT162b2 provides further protection against symptomatic disease but second doses of ChAdOx1 have not yet been rolled out in England. There is a clear effect of the vaccines against the UK variant of concern.

17.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253112

RESUMO

ObjectivesTo assess the association between learning disability and risk of hospitalisation and mortality from COVID-19 in England among adults and children. DesignWorking on behalf of NHS England, two cohort studies using patient-level data for >17 million people from primary care electronic health records were linked with death data from the Office for National Statistics and hospitalization data from NHS Secondary Uses Service using the OpenSAFELY platform. SettingGeneral practices in England which use TPP software. ParticipantsParticipants were males and females, aged up to 105 years, from two cohorts: (1) wave 1, registered with a TPP practice as of 1st March 2020 and followed until 31st August, 2020; (2) wave 2 registered 1st September 2020 and followed until 31st December 2020 (for admissions) or 8th February 2021 (for deaths). The main exposure group was people included on a general practice learning disability register (LDR), with a subgroup of people classified as having profound or severe learning disability. We also identified patients with Down syndrome and cerebral palsy (whether or not on the learning disability register). Main outcome measures(i) COVID-19 related death, (ii) COVID-19 related hospitalisation. Non-COVID-19 related death was also explored. ResultsIn wave 1, of 14,301,415 included individuals aged 16 and over, 90,095 (0.63%) were identified as being on the LDR. 30,173 COVID-related hospital admissions, 13,919 COVID-19 related deaths and 69,803 non-COVID deaths occurred; of which 538 (1.8%), 221 (1.6%) and 596 (0.85%) were among individuals on the LDR, respectively. In wave 2, 27,611 COVID-related hospital admissions, 17,933 COVID-19 related deaths and 54,171 non-COVID deaths occurred; of which 383 (1.4%), 260 (1.4%) and 470 (0.87%) were among individuals on the LDR. Wave 1 hazard ratios for individuals on the LDR, adjusted for age, sex, ethnicity and geographical location, were 5.3 (95% confidence interval (CI) 4.9, 5.8) for COVID-19 related hospital admissions and 8.2 (95% CI: 7.1, 9.4) for COVID-19 related death. Wave 2 produced similar estimates. Associations were stronger among those classed as severe-profound and among those in residential care. Down syndrome and cerebral palsy were associated with increased hazard of both events in both waves; Down syndrome to a much greater extent. Hazards of non-COVID-19 related death followed similar patterns with weaker associations. ConclusionsPeople with learning disabilities have markedly increased risks of hospitalisation and mortality from COVID-19. This raised risk is over and above that seen for non-COVID causes of death. Ensuring prompt access to Covid-19 testing and health care and consideration of prioritisation for COVID-19 vaccination and other targeted preventive measures are warranted.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249642

RESUMO

BackgroundThere is an urgent need to better understand whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection. MethodsA large multi-centre prospective cohort was recruited from publicly funded hospital staff in the UK. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed fortnightly questionnaires on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive or prior PCR/antibody test positive) or negative cohort (antibody negative, not previously known to be PCR/antibody positive). Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, possible (subdivided by symptom-status)) depending on hierarchy of evidence. Individuals in the primary infection were excluded from this analysis if infection was confirmed by antibody only. Reinfection rates in the positive cohort were compared against new PCR positives in the negative cohort using a mixed effective multivariable logistic regression analysis. FindingsBetween 18 June and 09 November 2020, 44 reinfections (2 probable, 42 possible) were detected in the baseline positive cohort of 6,614 participants, collectively contributing 1,339,078 days of follow-up. This compares with 318 new PCR positive infections and 94 antibody seroconversions in the negative cohort of 14,173 participants, contributing 1,868,646 days of follow-up. The incidence density per 100,000 person days between June and November 2020 was 3.3 reinfections in the positive cohort, compared with 22.4 new PCR confirmed infections in the negative cohort. The adjusted odds ratio was 0.17 for all reinfections (95% CI 0.13-0.24) compared to PCR confirmed primary infections. The median interval between primary infection and reinfection was over 160 days. InterpretationA prior history of SARS-CoV-2 infection was associated with an 83% lower risk of infection, with median protective effect observed five months following primary infection. This is the minimum likely effect as seroconversions were not included. FundingDepartment of Health and Social Care and Public Health England, with contributions from the Scottish, Welsh and Northern Irish governments.

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247981

RESUMO

BackgroundThe overall risk of reinfection in individuals who have previously had COVID-19 is unknown. To determine if prior SARS-CoV-2 infection (as determined by at least one positive commercial antibody test performed in a laboratory) in healthcare workers confers future immunity to reinfection, we are undertaking a large-scale prospective longitudinal cohort study of healthcare staff across the United Kingdom. MethodsPopulation and Setting: staff members of healthcare organisations working in hospitals in the UK At recruitment, participants will have their serum tested for anti-SARS-CoV-2 at baseline and using these results will be initially allocated to either antibody positive or antibody negative cohorts. Participants will undergo antibody and viral RNA testing at 1-4 weekly intervals throughout the study period, and based on these results may move between cohorts. Any results from testing undertaken for other reasons (e.g. symptoms, contact tracing etc.) or prior to study entry will also be included. Individuals will complete enrolment and fortnightly questionnaires on exposures and symptoms. Follow-up will be for at least 12 months from study entry. OutcomeThe primary outcome of interest is a reinfection with SARS -CoV-2 during the study period. Secondary outcomes will include incidence and prevalence (both RNA and antibody) of SARS-CoV-2, viral genomics, viral culture, symptom history and antibody/neutralising antibody titres. ConclusionThis large study will help us to understand the impact of the presence of antibodies on the risk of reinfection with SARS-CoV-2; the results will have substantial implications in terms of national and international policy, as well as for risk management of contacts of COVID-19 cases. Trial RegistrationIRAS ID 284460, HRA and Health and Care Research Wales approval granted 22 May 2020.

20.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20216689

RESUMO

BackgroundAntibody waning after SARS-CoV-2 infection may result in reduction in long-term immunity following natural infection and vaccination, and is therefore a major public health issue. We undertook prospective serosurveillance in a large cohort of healthy adults from the start of the epidemic in England. MethodsClinical and non-clinical healthcare workers were recruited across three English regions and tested monthly from March to November 2020 for SARS-CoV-2 spike (S) protein and nucleoprotein (N) antibodies using five different immunoassays. In positive individuals, antibody responses and long-term trends were modelled using mixed effects regression. FindingsIn total, 2246 individuals attended 12,247 visits and 264 were seropositive in [≥]2 assays. Most seroconversions occurred between March and April 2020. The assays showed >85% agreement for ever-positivity, although this changed markedly over time. Antibodies were detected earlier with Abbott (N) but declined rapidly thereafter. With the EuroImmun (S) and receptor-binding domain (RBD) assays, responses increased for 4 weeks then fell until week 12-16 before stabilising. For Roche (N), responses increased until 8 weeks, stabilised, then declined, but most remained above the positive threshold. For Roche (S), responses continued to climb over the full 24 weeks, with no sero-reversions. Predicted proportions sero-reverting after 52 weeks were 100% for Abbott, 59% (95% credible interval 50-68%) Euroimmun, 41% (30-52%) RBD, 10% (8-14%) Roche (N) <2% Roche (S). InterpretationTrends in SARS-CoV-2 antibodies following infection are highly dependent on the assay used. Ongoing serosurveillance using multiple assays is critical for monitoring the course and long-term progression of SARS-CoV-2 antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...