Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3552, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670972

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.


Assuntos
Antígeno B7-H1 , Imunoterapia Adotiva , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Linfócitos T , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Animais , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Sistemas CRISPR-Cas , Camundongos Endogâmicos NOD
2.
Cancer Immunol Res ; 10(4): 498-511, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362043

RESUMO

Chimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed. Here, we report a comprehensive study comparing engineered T cells either expressing a second-generation anti-CD19 CAR (CAR-T19) or secreting a CD19/CD3-targeting bispecific T-cell engager antibody (STAb-T19). We found that STAb-T19 cells are more effective than CAR-T19 cells at inducing cytotoxicity, avoiding leukemia escape in vitro, and preventing relapse in vivo. We observed that leukemia escape in vitro is associated with rapid and drastic CAR-induced internalization of CD19 that is coupled with lysosome-mediated degradation, leading to the emergence of transiently CD19-negative leukemic cells that evade the immune response of engineered CAR-T19 cells. In contrast, engineered STAb-T19 cells induce the formation of canonical immunologic synapses and prevent the CD19 downmodulation observed in anti-CD19 CAR-mediated interactions. Although both strategies show similar efficacy in short-term mouse models, there is a significant difference in a long-term patient-derived xenograft mouse model, where STAb-T19 cells efficiently eradicated leukemia cells, but leukemia relapsed after CAR-T19 therapy. Our findings suggest that the absence of CD19 downmodulation in the STAb-T19 strategy, coupled with the continued antibody secretion, allows an efficient recruitment of the endogenous T-cell pool, resulting in fast and effective elimination of cancer cells that may prevent CD19-positive relapses frequently associated with CAR-T19 therapies.


Assuntos
Leucemia , Linfócitos T , Animais , Antígenos CD19 , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Recidiva
3.
Front Immunol ; 11: 482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528460

RESUMO

Development of semi-automated devices that can reduce the hands-on time and standardize the production of clinical-grade CAR T-cells, such as CliniMACS Prodigy from Miltenyi, is key to facilitate the development of CAR T-cell therapies, especially in academic institutions. However, the feasibility of manufacturing CAR T-cell products from heavily pre-treated patients with this system has not been demonstrated yet. Here we report and characterize the production of 28 CAR T-cell products in the context of a phase I clinical trial for CD19+ B-cell malignancies (NCT03144583). The system includes CD4-CD8 cell selection, lentiviral transduction and T-cell expansion using IL-7/IL-15. Twenty-seven out of 28 CAR T-cell products manufactured met the full list of specifications and were considered valid products. Ex vivo cell expansion lasted an average of 8.5 days and had a mean transduction rate of 30.6 ± 13.44%. All products obtained presented cytotoxic activity against CD19+ cells and were proficient in the secretion of pro-inflammatory cytokines. Expansion kinetics was slower in patient's cells compared to healthy donor's cells. However, product potency was comparable. CAR T-cell subset phenotype was highly variable among patients and largely determined by the initial product. TCM and TEM were the predominant T-cell phenotypes obtained. 38.7% of CAR T-cells obtained presented a TN or TCM phenotype, in average, which are the subsets capable of establishing a long-lasting T-cell memory in patients. An in-depth analysis to identify individual factors contributing to the optimal T-cell phenotype revealed that ex vivo cell expansion leads to reduced numbers of TN, TSCM, and TEFF cells, while TCM cells increase, both due to cell expansion and CAR-expression. Overall, our results show for the first time that clinical-grade production of CAR T-cells for heavily pre-treated patients using CliniMACS Prodigy system is feasible, and that the obtained products meet the current quality standards of the field. Reduced ex vivo expansion may yield CAR T-cell products with increased persistence in vivo.


Assuntos
Imunoterapia Adotiva/métodos , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Centros Médicos Acadêmicos , Adolescente , Adulto , Automação , Reatores Biológicos , Proliferação de Células , Células Cultivadas , Criança , Citotoxicidade Imunológica , Feminino , Humanos , Memória Imunológica , Masculino , Sistemas Automatizados de Assistência Junto ao Leito , Adulto Jovem
4.
Mol Ther Methods Clin Dev ; 12: 134-144, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30623002

RESUMO

Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdc scid Il2rd tm1Wjl /SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients.

5.
Turk J Haematol ; 35(4): 217-228, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30185400

RESUMO

Seven years ago a chronic lymphocytic leukemia patient was for the first time successfully treated with chimeric antigen receptor (CAR)-modified T cells (CAR-T cells) to target CD19 overexpression in tumor cells. This was the beginning of the development of a new type of immunotherapy treatment in cancer patients. Since then, identification of novel antigens expressed in tumor cells and optimization of both CAR constructs and protocols of administration have opened up new avenues for the successful treatment of other hematological malignancies. However, research still continues to avoid some problems such as toxicities associated with the treatment and to find strategies to avoid tumor cell immune evasion mechanisms. On the other hand, for solid tumors, CAR-T therapy results are still in an early phase. In contrast to hematological malignancies, the complex tumor heterogeneity of solid tumors has led to the research of novel and challenging strategies to improve CAR-T cell activity. Here, we will review the main clinical results obtained with CAR-T cells in hematological malignancies, specifically focusing on CAR-T-19 and CAR-T against B-cell maturation antigen (CAR-T-BCMA). Moreover, we will mention the main problems that decrease CAR-T cell activity in solid tumors and the strategies to overcome them. Finally, we will present some of the first clinical results obtained for solid tumors.


Assuntos
Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/terapia , Humanos , Imunoterapia , Receptores de Antígenos de Linfócitos T/imunologia
6.
Pathobiology ; 82(2): 90-3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26160151

RESUMO

We present the histopathological findings of a naturally mummified eye from the Peruvian Lambayeque culture (900-1,200 AD), in which rehydration, light microscopy, and scanning electron microscopy allowed a detailed analysis of several eye tissues including the eyelids, sclera, and optic nerve, the latter showing evidence of hemorrhage likely related to the documented strangulation as the cause of death. We conclude that histopathological analysis of rehydrated mummified tissues can provide valuable information from fragile eye structures including the optic nerve, and these findings can be useful from a forensic point of view.


Assuntos
Asfixia/história , Comportamento Ritualístico , Olho/patologia , Múmias/patologia , Nervo Óptico/patologia , Asfixia/patologia , Olho/ultraestrutura , Feminino , Medicina Legal , História Medieval , Humanos , Microscopia Eletrônica de Varredura , Nervo Óptico/ultraestrutura , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...